Skip to main content
Log in

Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The actions of actin-based microfilaments in cell motility suggest a possible role in the mechanism of fast axonal transport1–3, but the pharmacological data evaluating their role in this process are equivocal4–6. Moreover, microfilaments are difficult to preserve and identify in ultrastructural studies7, so the organization and function of axonal actin has remained uncertain. We have now evaluated the role of actin microfilaments in intracellular transport of membranous organelles using video-enhanced contrast microscopy and gelsolin to analyse fast axonal transport directly in isolated axoplasm from the squid giant axon. With this preparation it is possible to perfuse axoplasm with large molecules that do not cross the plasmalemma, while controlling cation levels. The 90,000-molecular weight protein gelsolin depolymerizes actin microfilaments in micromolar Ca2+, but not in the absence of Ca2+. Axonal transport of membranous organelles has previously been shown to be unaffected by levels of Ca2+ up to 10 µM8. In the presence of EGTA, gelsolin has no effect on the movement of membranous organelles, but in the presence of 10 µM Ca2+ it completely blocks transport of all membranous organelles. No changes in the organization of the axoplasm were detected. These results and results using other probes for actin are consistent with the hypothesis that actin-based microfilaments are involved in the movement of membranous organelles in the axon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray, D. Biochimie 59, 1–6 (1977).

    Article  CAS  PubMed  Google Scholar 

  2. Goldberg, D. in Axoplasmic Transport (ed. Weiss, D.) 73–80 (Springer, Berlin, 1982).

    Google Scholar 

  3. Isenberg, G., Schubert, P. & Kreutzberg, G. in Axoplasmic Transport (ed. Weiss, D.) 314–321 (Springer, Berlin, 1982).

    Google Scholar 

  4. Isenberg, G., Schubert, P. & Kreutzberg, G. Brain Res. 194, 588–593 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Goldberg, D., Harris, D., Lubit, B. & Schwartz, J. Proc. natn. Acad. Sci. U.S.A. 77, 7448–7452 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Goldberg, D. Proc. natn. Acad. Sci. U.S.A. 79, 4818–4822 (1982).

    Article  ADS  CAS  Google Scholar 

  7. Forer, A. Meth. Cell Biol. 25, 131–142 (1982).

    Article  CAS  Google Scholar 

  8. Brady, S., Lasek, R. & Allen, R. Cell Motility (submitted).

  9. Lazarides, E. & Lindberg, U. Proc. natn. Acad. Sci. U.S.A. 71, 4742–4746 (1974).

    Article  ADS  CAS  Google Scholar 

  10. Davies, P., Bechtel, P. & Pastan, I. FEBS Lett. 77, 228–232 (1977).

    Article  CAS  PubMed  Google Scholar 

  11. Brown, S. & Spudich, J. J. Cell Biol. 88, 487–491 (1981).

    Article  CAS  Google Scholar 

  12. McLean-Fletcher, S. & Pollard, T. Cell 20, 329–341 (1980).

    Article  Google Scholar 

  13. Mojris, J. thesis, Case Western Reserve Univ. (1981).

  14. Morris, J. & Lasek, R. J. Cell Biol. 92, 192–198 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Wehland, J., Osborn, M. & Weber, K. Proc. natn. Acad. Sci. U.S.A. 74, 5613–5617 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Brady, S. T., Morris, J. R. & Lasek, R. J. (in preparation).

  17. Allen, R., Allen, N. & Travis, J. Cell Motility 1, 291–302 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Alien, R.D. & Allen, N. J. Microsc. 129, Pt 1, 3–17 (1983).

    Article  Google Scholar 

  19. Brady, S., Lasek, R. & Alien, R. Science 218, 1129–1131 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Alien, R., Metuzals, J., Tasaki, I., Brady, S. & Gilbert, S. Science 218, 1127–1129 (1982).

    Article  Google Scholar 

  21. Yin, H., Albrect, J. & Fattoum, A. J. Cell Biol. 91, 901–906 (1981).

    Article  CAS  PubMed  Google Scholar 

  22. Yin, H. L., Kwiatkowski, D., Mole, J. J. biol Chem. 259, 5271–5276 (1984).

    CAS  PubMed  Google Scholar 

  23. Yin, H., Hartwig, J., Maruyama, K. & Stossel, T. J. biol. Chem. 256, 9693–9697 (1981).

    CAS  PubMed  Google Scholar 

  24. Laemmli, U. Nature 227, 680–685 (1970).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. O'Farrell, P. J. biol. Chem. 250, 4007–4021 (1975).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, S., Lasek, R., Allen, R. et al. Gelsolin inhibition of fast axonal transport indicates a requirement for actin microfilaments. Nature 310, 56–58 (1984). https://doi.org/10.1038/310056a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/310056a0

  • Springer Nature Limited

This article is cited by

Navigation