Skip to main content
Log in

Delayed phase change due to hot asthenosphere causes Transantarctic uplift?

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The Transantarctic Mountains are one of the world's major mountain chains, extending 3,500 km across Antarctica in a belt 200–500 km wide (Fig. 1). The region has been uplifted by at least 4 km since late Mesozoic time, yet there is none of the thrusting, folding, regional metamorphism and andesitic volcanism associated with many other large Cenozoic mountain ranges and apparently related to subduction and subsequent continental collision. Instead, the uplift of the Transantarctic Mountains is attributed here to the delayed effects of the overriding by east Antarctica of anomalously hot asthenosphere forming under west Antarctica in the late Cretaceous. Temperature increases of 100 °C are estimated at the base of the lithosphere, with mantle heat flux increasing by ∼3.5 m W m−2. These changes cause an inferred uplift rate of 90 m Myr−1some 50 Myr later. The late Cenozoic volcanism in the Transantarctic Mountains, typified by activity in Victoria Land, is attributed to the previously heated continental lithosph¨re overriding hot asthenosphere that was brought under Antarctica when it separated from Australia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith, A. G. Nature 296, 400–404 (1982).

    Article  ADS  Google Scholar 

  2. Morgan, J. W. Tectonophysics 94, 126–139 (1983).

    Google Scholar 

  3. Hager, B. H. & O'Connell, R. J. Tectonophysics 50, 111–133 (1978).

    Article  ADS  Google Scholar 

  4. Hager, B. H. & Oapos;Connell, R. J. J. geophys. Res. 84, 1031–1048 (1979).

    Article  ADS  Google Scholar 

  5. Hager, B. H. & O'Connell, R. J. J. geophys. Res. 86, 4843–4867 (1981).

    Article  ADS  Google Scholar 

  6. Solomon, S. C., Sleep, N. H. & Richardson, R. M. Geophys. J. R. astr. Soc. 42, 769–801 (1975).

    Article  Google Scholar 

  7. Dalziel, I. W. D. & Elliot, D. H. Tectonics 1, 3–20 (1982).

    Article  ADS  Google Scholar 

  8. Jankowski, E. J. thesis, Univ. Cambridge (1981).

  9. Jankowski, E. J. & Drewry, D. J. Nature 291, 17–21 (1981).

    Article  ADS  Google Scholar 

  10. Jankowski, E. J. ; Drewry, D. J. & Behrendt, J. C. in Antarctic Earth Science (eds Oliver, R. & Jago, J.) (Australian Academy of Science, 1983).

    Google Scholar 

  11. Davey, F. J. J. R. Soc. N.Z. 11, 465–79 (1981).

    Article  Google Scholar 

  12. Drewry, D. J. in Antarctica: Glaciological and Geophysical Folio (ed. Drewry, D. J.) (Scott Polar Research Institute, Cambridge, 1983).

    Google Scholar 

  13. Bentley, C. R. & Clough, J. W. in Antarctic Geology and Geophysics (ed. Adie, R. J.) 683–691 (Universitetsforlaget, Oslo, 1972).

    Google Scholar 

  14. Elliot, D. A. Proc. Symp. Andean and Antarctic Volcanology Problems, Santiago, 354–372 (International Association for Volcanology and Chemistry of the Earth's Interior, 1974).

    Google Scholar 

  15. Weissel, G. P., Hayes, D. E. & Herron, E. M. Mar. Geol. 25, 231–277 (1977).

    Article  Google Scholar 

  16. Schlater, J. G. & Parsons, B. J. geophys. Res. 86, 11535–11552 (1981).

    Article  ADS  Google Scholar 

  17. Gleadow, A. J. W., McKelvey, B. C. & Ferguson, K. U. in Init. Rep. McMurdo Sedimentation and Tectonic Studies Project (New Zealand Geological Survey, 1982).

    Google Scholar 

  18. Gleadow, A. J. W. Paper at 4th int.Symp. Antarctic Earth Sciences, Adelaide (1982).

  19. Decker, E. R. & Bucher, G. J. in Antarctic Geoscience (ed. Craddock, C.) 887–894 (University of Wisconsin Press, Madison 1982).

    Google Scholar 

  20. Drewry, D. J. in Antarctic Geoscience (ed. Craddock, C.) 977–984 (University of Wisconsin Press, Madison, 1982).

    Google Scholar 

  21. Armstrong, R. L. N.Z. J. Geol. Geophys. 21, 685–698 (1978).

    Article  CAS  Google Scholar 

  22. Richardson, S. W. & England, P. C. Earth planet. Sci. Lett. 42, 183–190 (1979).

    Article  ADS  CAS  Google Scholar 

  23. Schlater, J. G., Jaupart, C. & Galson, D. Rev. Geophys. Space Phys. 18, 269–311 (1980).

    Article  ADS  Google Scholar 

  24. Webb, P. N. Ant. J. U.S. 6, 227–234 (1972).

    Google Scholar 

  25. Webb, P. N. & Wrenn, J. H. in Antarctic Geoscience (ed. Craddock, C.) 1117–1122 (University of Wisconsin Press, Madison, 1982).

    Google Scholar 

  26. Grindley, G. W. N.Z. J. Geol. Geophys. 10, 557–598 (1967).

    Article  Google Scholar 

  27. Stump, E., Sheridan, M. F., Borg, S. G. & Sutter, J. F. Science 207, 757–59 (1980).

    Article  Google Scholar 

  28. Katz, H. R. in Antarctic Geoscience (ed. Craddock, C.) 827–834 (University of Wisconsin Press, Madison, 1982).

    Google Scholar 

  29. Drewry, D. J. J. geol. Soc. Lond. 131, 255–273 (1975).

    Article  Google Scholar 

  30. McGregor, V. R. & Wade, F. A. in Geologie Maps of Antarctica (eds Bushnell, V. C. & Craddock, C.) Sheet 16 (American Geographical Society, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A., Drewry, D. Delayed phase change due to hot asthenosphere causes Transantarctic uplift?. Nature 309, 536–538 (1984). https://doi.org/10.1038/309536a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309536a0

  • Springer Nature Limited

This article is cited by

Navigation