Skip to main content

Advertisement

Log in

Bacterial chemolithotrophy in the ocean is associated with sinking particles

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The oceanic carbon cycle has traditionally been viewed as a reversible, one step reduction–oxidation reaction (CO2⇌CH2O). Principle pathways were thought to involve eukaryotic photoautotrophy and oxygen-dependent bacterial respiration, respectively. However, prokaryotic (cyanobacterial) photoautotrophy is now well documented and has even been proposed as a major carbon pathway1–6. In a previous study of the mesopelagic zone in the North Pacific Ocean7, the observed downward fluxes of organic carbon, nitrogen, ATP and RNA suggested production in situ of new particulate organic carbon at 700–900 m. Here we present evidence that this is indeed the case and that it is mediated by bacterial chemolithotrophy. Energy for this process may be in part provided by detrital NH+4 derived from the downward flux of large particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Waterbury, J. B., Watson, S. W., Buillard, R. R. & Brand, L. E. Nature 277, 293–294 (1979).

    Article  ADS  Google Scholar 

  2. Johnson, P. W. & Sieburth, J. M. Limnol. Oceanogr. 24, 928–935 (1979).

    Article  ADS  Google Scholar 

  3. Krempin, D. W. & Sullivan, C. W. Can. J. Microbiol. 27, 1341–1344 (1981).

    Article  Google Scholar 

  4. Morris, I. & Glover, H. Limnol. Oceanogr. 26, 957–961 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Li, W. K. et al. Science 219, 292–295 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Platt, T., Subba Rao, D. V. & Irwin, B. Nature 301, 702–704 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Karl, D. M. & Knauer, G. A. Deep-Sea Res. (in the press).

  8. Knauer, G. A., Martin, J. H. & Bruland, K. W. Deep-Sea Res. 26 A, 97–108 (1979).

    Google Scholar 

  9. Fellows, D. A., Karl, D. M. & Knauer, G. A. Deep-Sea Res. 28 A, 921–936 (1981).

    Google Scholar 

  10. Ward, B. B. & Perry, M. J. Appl. envir. Microbiol. 39, 913–918 (1980).

    CAS  Google Scholar 

  11. Ward, B. B. J. mar. Res. 40, 1155–1172 (1982).

    Google Scholar 

  12. Watson, S. W. Limnol. Oceanogr. 10, R274–289 (1965).

    Article  ADS  Google Scholar 

  13. Carlucci, A. F. & Strickland, J. D. H. J. exp. mar. Biol. Ecol. 2, 156–166 (1968).

    Article  CAS  Google Scholar 

  14. Kornberg, H. L. Symp. Soc. gen. Microbiol. 15, 8–39 (1965).

    CAS  Google Scholar 

  15. Romanenko, V. I. Microbiology 34, 334–339 (1965).

    Google Scholar 

  16. Overbeck, J. Arch. Hydrobiol. Beih. Ergebn. Limnol. 13, 56–61 (1979).

    CAS  Google Scholar 

  17. Peck, H. D. A. Rev. Microbiol. 22, 489–518 (1968).

    Article  CAS  Google Scholar 

  18. Kelly, D. P. A. Rev. Microbiol. 25, 177–210 (1971).

    Article  CAS  Google Scholar 

  19. Painter, H. A. Water Res. 4, 393–450 (1970).

    Article  CAS  Google Scholar 

  20. Karl, D. M. & Winn, C. D. in Heterotrophic Activity in the Sea (eds Hobbie, J. E. & Williams, P. J. leB.) (Plenum, New York, in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karl, D., Knauer, G., Martin, J. et al. Bacterial chemolithotrophy in the ocean is associated with sinking particles. Nature 309, 54–56 (1984). https://doi.org/10.1038/309054a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309054a0

  • Springer Nature Limited

This article is cited by

Navigation