Skip to main content

Advertisement

Log in

Nutrient depletion indicates high primary productivity in the Weddell Sea

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The Southern Ocean, and in particular the Weddell Sea, have long been considered areas of high biological productivity1, but recent isotopic measurements of primary productivity have not confirmed this view2,3. Because the large Zooplankton and marine mammal populations of the Southern Ocean depend ultimately on phytoplankton as the base of the food web, accurate knowledge of primary productivity is essential to our understanding of the Antarctic ecosystem. Oceanographie data collected aboard the Soviet icebreaker Mikhail Somov have allowed us to derive a new productivity estimate, based on the seasonal depletion of nitrate, phosphate and silicic acid in the surface layer. From these depletions and data on the elemental composition of Southern Ocean phytoplankton, we estimate average primary productivity in the Weddell Sea in the springtime to be 220–420 mg C m−2 day−1. Our most conservative estimate is 1.5–4 times higher than recently reported measurements of productivity in the open ocean areas of the Southern Ocean2–5. Our estimates are inherently averages over time and space, including the effects of brief, intense spring blooms of phytoplankton which may occur near the receding ice edge6–8. Studies of primary productivity based on isotope uptake experiments, particularly in the austral summer, may fail to account for the significance of such blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hart, T. J. Discovery Rep. 8, 3–268 (1934).

    Google Scholar 

  2. Holm-Hansen, O., El-Sayed, S. Z., Franceschini, G. A. & Cuchel, R. L. in Proc. 3rd SCAR Symp. Antarctic Biology, 11–50 (Smithsonian Institution, Washington DC, 1977).

    Google Scholar 

  3. El-Sayed, S. Z. & Turner, J. T. in Polar Oceans (ed. Dunbar, M. J.) 463–503 (Arctic Institute of North America, Calgary, Alberta, 1977).

    Google Scholar 

  4. Gilbert, P. M., Biggs, D. C. & McCarthy, J. J. Deep-Sea Res. 29, 837–850 (1982).

    Article  ADS  Google Scholar 

  5. Slawyk, G. Aust. J. mar. Freshwat. Res. 30, 431–448 (1977).

    Article  Google Scholar 

  6. El-Sayed, S. Z. in Biology of the Antarctic Seas Vol. 4 (eds Land, G. & Wallen, I.) 301–312 (American Geophysical Union, Washington DC, 1971).

    Google Scholar 

  7. Olson, R. J. Limnol. Oceanogr. 25, 1064–1074 (1980).

    Article  ADS  CAS  Google Scholar 

  8. Smith, W. O. & Nelson, D. M. in Proc. 4th Symp. Antarctic Biology (Elsevier, New York, in the press).

  9. Gordon, A. L. & Huber, B. A. J. geophys. Res. 89 (C1), 641–648 (1984).

    Article  ADS  Google Scholar 

  10. Gordon, A. L., Chen, C. T. A. & Metcalf, W. G. J. geophys. Res. 89 (C1), 637–640 (1984).

    Article  ADS  Google Scholar 

  11. Clarke, D. B. & Askley, S. F. J. geophys. Res. (in the press).

  12. Jennings, J. C. Jr, Nelson, D. M. & Gordon, L. I. Antarct. J. U.S. 8, 101 (1982).

    Google Scholar 

  13. Carmack, E. C. & Foster, T. D. Deep-Sea Res. 22, 711–724 (1975).

    Google Scholar 

  14. Bainbridge, A. E., Geosecs Atlantic Expedition Vol. 1 (National Science Foundation, Washington DC, 1981).

    Google Scholar 

  15. Huber, B. A., Rennie, S. E., Georgi, D. T., Jacobs, S. S. & Gordon, A. L. Islas Orcadas Reports, Cruise 12, Jan–Feb 1977, Tech. Rep. CU-2-81-TR2 (Larnont-Doherty Geological Observatory, Columbia University, Palisades, 1981).

    Google Scholar 

  16. Mosby, H. Scientific Results of the Norwegian Antarctic Expeditions, 1927–1928, Vol. 1(11) (Det Norske Videnskaps-Academi I, Oslo, 1934).

    Google Scholar 

  17. Gordon, A. L., Martinson, D. G. & Taylor, H. W. Deep-Sea Res. 28 A, 151–163 (1981).

    Article  ADS  Google Scholar 

  18. Gordon, A. L. J. geophys. Res. 86, 493–4197 (1981).

    Google Scholar 

  19. Ackley, S. F. Int. Ass. hydrol. Sci. 131, 129–159 (1981).

    Google Scholar 

  20. Marra, J. & Boardman, D. C. Mar. Ecol.-Prog. Ser. (submitted).

  21. Nelson, D. M. & Gordon, L. I. Geochim. cosmochim. Acta 46, 491–501 (1982).

    Article  ADS  CAS  Google Scholar 

  22. Redfield, A. C., Ketchum, B. H. & Richards, F. A. in The Sea, Ideas and Observations Vol. 2, 26–77 (Interscience, New York, 1963).

    Google Scholar 

  23. Copin-Montegut, C. & Copin-Montegut, G. Deep-Sea Res. 25, 911–931 (1978).

    Article  ADS  CAS  Google Scholar 

  24. El-Sayed, S. Z. & Taguchi, S. Deep-Sea Res. 28 A, 1017–1032 (1981).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, J., Gordon, L. & Nelson, D. Nutrient depletion indicates high primary productivity in the Weddell Sea. Nature 309, 51–54 (1984). https://doi.org/10.1038/309051a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/309051a0

  • Springer Nature Limited

This article is cited by

Navigation