Skip to main content
Log in

Clathrin light chains and secretory vesicle binding proteins are distinct

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Recently, several groups1–4 have initiated studies on cytosolic proteins that bind to isolated secretory vesicle membranes in the presence of Ca2+ in order to identify proteins that may regulate exocytosis. Two major chromaffin granule binding proteins, of molecular weights 32,000 (32K) and 34,000 (34K), were reported to have the same mobilityon one-dimensional SDS gels as clathrin-associated light chains from the adrenal medulla, and the 34K granule binding protein the same one-dimensional peptide map as the 34K clathrin light chain5. These observations support the hypothesis that Ca2+ -dependent recruitment of soluble light chains to the vesicle membrane may nucleate the assembly of a clathrin coat and initiate endocytosis. Here we report that two-dimensional peptide maps of the clathrin light chains and of all chromaffin granule membrane binding proteins in the 30K range are distinct, and therefore fail to support this hypothesis. It has also been suggested that some or all of the vesicle binding proteins require calmodulin for their interaction with the membrane5. However, we find that antagonism of calmodulin by trifluoperazine does notprevent the association of the other cytosolic proteins with the chromaffin granule membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Creutz, C. E. Biochem. biophys. Res. Commun. 103, 1395–1400 (1981).

    Article  CAS  Google Scholar 

  2. Creutz, C. E. et al. J. biol. Chem. 258, 14664–14674 (1983).

    CAS  Google Scholar 

  3. Geisow, M. J. & Burgoyne, R. D. J. Neurochem. 38, 1735–1741 (1982).

    Article  CAS  Google Scholar 

  4. Brocklehurst, K. W. & Hutton, J. C. Biochem. J. 210, 533–539 (1983).

    Article  CAS  Google Scholar 

  5. Geisow, M. J. & Burgoyne, R. D. Nature 301, 432–435 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Blaschko, H., Combine, R. S., Schneider, F. H., Silver, M. & Smith, A. D. Nature 215, 58–59 (1967).

    Article  ADS  CAS  Google Scholar 

  7. Winkler, H. Phil. Trans. R. Soc. B261, 293–303 (1971).

    Article  CAS  Google Scholar 

  8. Elder, J. H., Pickett, R. A., Hampton, J. & Lerner, R. A. J. biol. Chem. 252, 6510–6515 (1977).

    CAS  PubMed  Google Scholar 

  9. Keen, J. H., Willingham, M. C. & Pastan, I. H. Cell 16, 303–312 (1979).

    Article  CAS  Google Scholar 

  10. Creutz, C. E., Pazoles, C. J. & Pollard, H. B. J. biol. Chem. 253, 2858–2866 (1978).

    CAS  PubMed  Google Scholar 

  11. Creutz, C. E. & Sterner, D. C. Biochem. biophys. Res. Commun. 114, 355–364 (1983).

    Article  CAS  Google Scholar 

  12. Creutz, C. E. J. Cell Biol. 91, 247–256 (1981).

    Article  CAS  Google Scholar 

  13. Brodsky, F. M., Holmes, N. J. & Parham, P. J. Cell Biol. 96, 911–914 (1983).

    Article  CAS  Google Scholar 

  14. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creutz, C., Harrison, J. Clathrin light chains and secretory vesicle binding proteins are distinct. Nature 308, 208–210 (1984). https://doi.org/10.1038/308208a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308208a0

  • Springer Nature Limited

This article is cited by

Navigation