Skip to main content
Log in

Formation of the 3′ end of histone mRNA by post-transcriptional processing

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The specific 3′ termini of a number of eukaryotic mRNAs have been shown to be generated by the post-transcriptional processing of primary transcripts or pre-mRNAs1–4. The sequence AAUAAA, present in the 3′ region of nearly all eukaryotic mRNAs, appears to be involved in the cleavage and subsequent polyadenylation of the primary transcript5. An exception to this general rule is the case of the histone mRNAs, which lack the AAUAAA sequence and are not normally polyadenylated. Histone mRNAs do, however, contain a highly conserved 23 base pair sequence at their 3′ termini6, which is required for correct 3′ end formation7. The similarity between this conserved sequence, which can be drawn as a hairpin loop, and bacterial transcription terminators8 has led several investigators to suggest that the specific 3′ end of histone mRNA is formed by termination of transcription9,10. So far, however, experimental results have not been presented which make it possible to distinguish between a post-transcriptional processing or a transcription termination mechanism for the formation of histone mRNA 3′ termini. We have investigated this issue by synthesizing in vitro unprocessed histone pre-mRNAs that extend past the normal 3′ terminus. These in vitro synthesized pre-mRNAS were injected into frog oocyte nuclei to study their fate. The results demonstrate that correct 3′ ends of chicken histone H2B mRNAs can be formed by RNA processing of longer synthetic pre-mRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ford, J. & Hsu, M. J. Virol. 28, 795–801 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nevins, J. R. & Darnell, J. E. Cell 15, 1477–1493 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Hofer, E. & Darnell, J. E. Cell 23, 585–593 (1981).

    Article  CAS  PubMed  Google Scholar 

  4. Manley, J. L., Sharp, P. A. & Gefter, M. L. J. molec. Biol. 159, 581–589 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Fitzgerald, M. & Shenk, T. Cell 24, 251–260 (1981).

    Article  CAS  PubMed  Google Scholar 

  6. Hentschel, C. C. & Birnstiel, M. L. Cell 25, 301–313 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Birchmeier, C., Grosschedl, R. & Birnstiel, M. L. Cell 28, 739–745 (1982).

    Article  CAS  PubMed  Google Scholar 

  8. Pribnow, D. in Biological Regulation and Development Vol. 1 (ed. Goldberger, R. F.) 250–277 (Plenum, New York, 1979).

    Google Scholar 

  9. Busslinger, M., Portmann, R. & Birnstiel, M. L. Nucleic Acids Res. 6, 2997–3008 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stunnenberg, H. G. & Birnstiel, M. L. Proc. natn. Acad. Sci. U.S.A. 79, 6201–6204 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Probst, E., Kressman, A. & Birnstiel, M. L. J. molec. Biol. 135, 709–732 (1979).

    Article  CAS  PubMed  Google Scholar 

  12. Butler, E. & Chamberlin, M. J. biol. Chem. 257, 5772–5778 (1982).

    CAS  PubMed  Google Scholar 

  13. Green, M., Maniatis, T. & Melton, D. Cell 32, 681–694 (1983).

    Article  CAS  PubMed  Google Scholar 

  14. Harvey, R. P., Robins, A. J. & Wells, J. R. E. Nucleic Acids Res. 10, 7851–7863 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gurdon, J. & Melton, D. A. A. Rev. Genet. 15, 189–218.

  16. Hentschel, C., Irminger, J., Bucher, P. & Birnstiel, M. L. Nature 285, 147–151 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Seiler-Tuyns, A. & Birnstiel, M. L. J. molec. Biol. 151, 607–626 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Zernick, M., Heintz, N., Boime, I. & Roeder, R. G. Cell 22, 807–815 (1980).

    Article  Google Scholar 

  19. Turner, P. & Woodland, H. Nucleic Acids Res. 10, 3769–3780 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melton, D., DeRobertis, E. & Cortese, R. Nature 284, 143–148 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Melton, D. & Cortese, R. Cell 18, 1165–1172 (1979).

    Article  CAS  PubMed  Google Scholar 

  22. Galli, G., Hofstetter, H., Stunnenberg, H. & Birnstiel, M. L. Cell 34, 823–828 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieg, P., Melton, D. Formation of the 3′ end of histone mRNA by post-transcriptional processing. Nature 308, 203–206 (1984). https://doi.org/10.1038/308203a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/308203a0

  • Springer Nature Limited

This article is cited by

Navigation