Skip to main content

Advertisement

Log in

Photodriven charge separation in a carotenoporphyrin–quinone triad

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The key steps in the photosynthetic conversion of light to chemical potential energy include not only photodriven charge separation, but also prevention of the back-reaction (charge recombination). Although the first of these steps has been achieved in several biomimetic solar energy conversion systems, retarding the back-reaction has proved more difficult. This may be accomplished by rapidly moving the electron, the hole, or both away from the site of excitation to more stabilizing environments. In photosynthetic membranes, the electron is transferred sequentially over several closely coupled molecules, including tetrapyrroles and quinones1–3. In semiconductor/liquid interfacial systems both the electron and the hole migrate following excitation4,5. We now report that substantial slowing of the back-reaction has been achieved with a tripartite molecule in which a long-lived photodriven charge-separated state of relatively high potential is formed from an excited singlet state in accordance with the above principles. This molecular triad (compound I) consists of a tetraarylporphyrin covalently linked to both a carotenoid and a quinone. In solution, excitation of the porphyrin moiety by visible light results in the rapid (<100 ps) formation of a transient species C+.−P−Q−−., with a lifetime on the μs time scale and an energy more than 1 eV above the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dutton, P. L., Prince, R. C. & Tiede, D. M. Photochem. Photobiol. 28, 939–949 (1978).

    Article  CAS  Google Scholar 

  2. Sauer, K. Acc. chem. Res. 11, 257–264 (1978).

    Article  CAS  Google Scholar 

  3. Mathis, P. & Paillotin, G. in The Biochemistry of Plants Vol. 8 (eds Hatch, M. D. & Boardman, N. K.) 97–161 (Academic, New York, 1981).

    Google Scholar 

  4. Gerischer, H. in Topics appl. Phys. 31, 115–172 (1979).

    Article  CAS  Google Scholar 

  5. Wrighton, M. S. Acc. chem. Res. 12, 303–310 (1979).

    Article  CAS  Google Scholar 

  6. Dirks, G., Moore, A. L., Moore, T. A. & Gust, D. Photochem. Photobiol. 32, 277–280 (1980).

    Article  CAS  Google Scholar 

  7. Moore, A. L., Dirks, G., Gust, D. & Moore, T. A. Photochem. Photobiol. 32, 691–695 (1980).

    Article  CAS  Google Scholar 

  8. Bensasson, R. V. et al. Nature 290, 329–332 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Moore, A. L. et al. Science 216, 982–984 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Liddell, P. A. et al. Photochem. Photobiol. 36, 641–645 (1982).

    Article  CAS  Google Scholar 

  11. Chachaty, C. et al. Org. magn. Reson. (in the press).

  12. van Best, J. A. & Mathis, P. Rev. scient. Instrum. 49, 1332–1335 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Keene, J. P. J. scient. Instrum. 41, 493–496 (1964).

    Article  ADS  CAS  Google Scholar 

  14. Dorfman, L. M., Sujdak, R. J. & Bockrath, B. Acc. chem. Res. 9, 352–357 (1976).

    Article  CAS  Google Scholar 

  15. Mathis, P. & Vermeglio, A. Photochem. Photobiol. 15, 157–164 (1972).

    Article  CAS  Google Scholar 

  16. Dawe, E. A. & Land, E. J. JCS Faraday Trans. I 71, 2162–2169 (1975).

    Article  CAS  Google Scholar 

  17. Chauvet, J. -P., Viovy, R., Land, E. J., Santus, R. & Truscott, T. G. J. phys. Chem. 87, 592–601 (1983).

    Article  CAS  Google Scholar 

  18. Mialocq, J. C. Chem. Phys. 73, 107–115 (1982).

    Article  CAS  Google Scholar 

  19. Migita, M. et al. Chem. Phys. Lett. 84, 263–266 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Bergkamp, M. A., Dalton, J. & Netzel, T. L. J. Am. chem. Soc. 104, 253–259 (1982).

    Article  CAS  Google Scholar 

  21. Bensasson, R. & Land, E. J. Photochem. photobiol. Rev. 3, 163–191 (1978).

    CAS  Google Scholar 

  22. Moore, T. Benin, D. & Tom, R. J. Am. chem. Soc. 104, 7356–7357 (1982).

    Article  CAS  Google Scholar 

  23. Kong, J. L. Y., Spears, K. G. & Loach, P. A. Photochem. Photobiol. 35, 545–553 (1982).

    Article  CAS  Google Scholar 

  24. Tabushi, I., Koga, N. & Yanagita, M. Tetrahedron Lett. 257–260 (1979).

  25. Ho, T. F., Mclntosh, A. R. & Bolton, J. R. Nature 286, 254–256 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Mulliken, R. S. J. Am. chem. Soc. 72, 600–608 (1950); 74, 811–824 (1952).

    Article  CAS  Google Scholar 

  27. Schenck, C. C., Diner, B., Mathis, P. & Satoh, K. Biochim. biophys. Acta 680, 216–227 (1982).

    Article  CAS  Google Scholar 

  28. Paramonova, L. I., Naush, Ya., Kreslavskii, V. D. & Stolovitskii, Yu. M. Biophysics 27, 199–203 (1982).

    Google Scholar 

  29. Prince, R. C., Gunner, M. R. & Dutton, P. L. in Function of Quinones in Energy Conserving Systems (ed. Trumpower, B. L.) 29–33 (Academic, New York, 1982).

    Book  Google Scholar 

  30. Platt, J. R. Science 129, 372–374 (1959).

    Article  ADS  CAS  Google Scholar 

  31. Mauzerall, D. Israel J. Chem. 21, 321–324 (1981).

    Article  CAS  Google Scholar 

  32. Mialocq, J. C., Amouyal, E., Bernas, A. & Grand, D. J. phys. Chem. 86, 3173–3177 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, T., Gust, D., Mathis, P. et al. Photodriven charge separation in a carotenoporphyrin–quinone triad. Nature 307, 630–632 (1984). https://doi.org/10.1038/307630a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307630a0

  • Springer Nature Limited

This article is cited by

Navigation