Skip to main content

Advertisement

Log in

Magnesium gates glutamate-activated channels in mouse central neurones

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The responses of vertebrate neurones to glutamate involve at least three receptor types1. One of these, the NMDA receptor (so called because of its specific activation by N-methyl-D-aspartate), induces responses presenting a peculiar voltage sensitivity2–6. Above resting potential, the current induced by a given dose of glutamate (or NMDA) increases when the cell is depolarized4–6. This is contrary to what is observed at classical excitatory synapses, and recalls the properties of ‘regenerative’ systems like the Na+ conductance of the action potential. Indeed, recent studies of L-glutamate, L-aspartate and NMDA-induced currents have indicated that the current–voltage (I–V) relationship can show a region of ‘negative conductance’ and that the application of these agonists can lead to a regenerative depolarization4–6. Furthermore, the NMDA response is greatly potentiated by reducing the extracellular Mg2+ concentration ([Mg2+]o) below the physiological level (∼1 mM)7,8. By analysing the responses of mouse central neurones to glutamate using the patch-clamp technique9, we have now found a link between voltage sensitivity and Mg2+ sensitivity. In Mg2+-free solutions, L-glutamate, L-aspartate and NMDA open cation channels, the properties of which are voltage independent. In the presence of Mg2+, the single-channel currentsmeasured at resting potential are chopped in bursts andthe probability of opening of the channels is reduced. Both effects increase steeply with hyper-polarization, thereby accounting for the negative slope of the I–V relationship of the glutamate response. Thus, the voltage dependence of the NMDA receptor-linked conductance appears to be a consequence of the voltage dependence of the Mg2+ block and its interpretation does not require the implication of an intramembrane voltage-dependent ‘gate’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. 21, 165–205 (1981).

    Article  CAS  Google Scholar 

  2. Shapovalov, A. I., Shiriaev, B. I. & Velumian, A. A. J. Physiol., Lond. 279, 437–455 (1978).

    Article  CAS  Google Scholar 

  3. Engberg, I., Flatman, J. A. & Lambert, J. D. C. J. Physiol., Lond. 288, 227–261 (1969).

    Google Scholar 

  4. MacDonald, J. F., Porietis, A. V. & Wojtowicz, J. M. Brain Res. 237, 248–253 (1982).

    Article  CAS  Google Scholar 

  5. MacDonald, J. F. & Porietis, A. V. Soc. Neurosci, Abstr. 8, 796 (1982).

    Google Scholar 

  6. Flatman, J. A., Schwindt, P. C., Crill, W. E. & Stafstrom, C. E. Brain Res. 266, 169–173 (1983).

    Article  CAS  Google Scholar 

  7. Ault, B., Evans, R. H., Francis, A. A., Oakes, D. J. & Watkins, J. C. J. Physiol., Lond. 307, 413–428 (1980).

    Article  CAS  Google Scholar 

  8. Scatton, B. & Lehmann, J. Nature 297, 422–424 (1982).

    Article  ADS  CAS  Google Scholar 

  9. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  10. Beaujouan, J. C. et al. Molec. Pharmac. 22, 48–55 (1982).

    CAS  Google Scholar 

  11. Neher, E. & Stevens, C. F. A. Rev. Biophys. Bioengng 6, 48–381 (1977).

    Article  Google Scholar 

  12. Jan, L. Y. & Jan, Y. N. J. Physiol., Lond. 262, 215–236 (1976).

    Article  CAS  Google Scholar 

  13. Anwyl, R. J. Physiol., Lond. 273, 367–388 (1977).

    Article  CAS  Google Scholar 

  14. Neher, E. & Steinbach, J. H. J. Physiol., Lond. 277, 153–176 (1978).

    Article  CAS  Google Scholar 

  15. Armstrong, C. M. J. gen. Physiol. 58, 413–437 (1971).

    Article  CAS  Google Scholar 

  16. Adams, P. R. J. Physiol., Lond. 260, 531–552 (1976).

    Article  CAS  Google Scholar 

  17. Fukushima, Y. J. Physiol., Lond. 331, 311–331 (1982).

    Article  CAS  Google Scholar 

  18. Colquhoun, D. & Hawkes, A. G. in Single Channel Recording (eds Sakmann, B. & Neher, E.) 135–175 (Plenum, New York, 1983).

    Book  Google Scholar 

  19. Neher, E. J. Physiol., Lond. 339, 663–678 (1983).

    Article  CAS  Google Scholar 

  20. Ascher, P., Marty, A. & Neild, T-O. J. Physiol., Lond. 278, 207–235 (1978).

    Article  CAS  Google Scholar 

  21. Clapham, D. & Neher, E. Naunyn-Schmiedebergs Archs Pharmak. 322, R62, 1983: J. Physiol., Lond. (in the press).

    Google Scholar 

  22. Marty, A. Pflügers Arch. ges. Physiol. 396, 179–181 (1983).

    Article  CAS  Google Scholar 

  23. Trautmann, A. & Siegelbaum, S. in Single Channel Recording (Sakmann, B. & Neher, E.) 473–480 (Plenum, New York, 1983).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, L., Bregestovski, P., Ascher, P. et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465 (1984). https://doi.org/10.1038/307462a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/307462a0

  • Springer Nature Limited

This article is cited by

Navigation