Skip to main content
Log in

Selective unfolding of erythroid chromatin in the region of the active β-globin gene

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Globin gene expression, which occurs exclusively in the erythroid cell lineage, is controlled at the level of transcription1. It is thus of some considerable interest to compare the chromatin structure of this gene with that of inactive genes in erythroid cell nuclei and to compare the chromatin structure of the globin gene in its active and inactive states in nuclei of different cell types. Other workers have observed that globin genes in erythroid cell nuclei exhibit the enhanced overall sensitivity to nucleases2 and the hypersensitive site in the 5′-flanking sequence3 typical of many active genes4. The nature of the structural changes giving rise to nuclease sensitivity are however obscure. We have investigated the local higher order structure of chromatin in the region of unique genes in chicken by sucrose gradient sedimentation of chromatin restriction fragments. We find that ovalbumin and α2-collagen gene fragments in erythrocyte chromatin and an adult β-globin gene fragment in spleen chromatin sediment with bulk chromatin fragments of the same DNA size, whereas the β-globin gene fragment in erythrocyte chromatin sediments more slowly than bulk fragments of equivalent size. The simplest interpretation of the results is that the solenoid structure in the region of the globin gene is selectively and permanently unfolded on gene activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chao, M. V., Mellon, P., Charnay, P., Maniatis, T. & Axel, R. Cell 12, 483–493 (1983).

    Article  Google Scholar 

  2. Weinbraub, H. & Groudine, M. Science 193, 848–856 (1976).

    Article  ADS  Google Scholar 

  3. McGhee, J., Wood, W. T., Dolan, M., Engel, J. D. & Felsenfeld, G. Cell 27, 45–55 (1981).

    Article  CAS  Google Scholar 

  4. Cartwright, I. L. et al. CRC Crit. Rev. Biochem. 13, 1–86 (1982).

    Article  CAS  Google Scholar 

  5. Allan, J. et al. J. Cell Biol. 90, 279–288 (1981).

    Article  CAS  Google Scholar 

  6. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  7. Hentschel, C. C. & Tata, J. R. Devl. Biol. 65, 496–507 (1978).

    Article  CAS  Google Scholar 

  8. Gariglio, P., Bellard, M. & Chambon, P. Nucleic Acids Res. 9, 2589–2598 (1981).

    Article  CAS  Google Scholar 

  9. Wood, W. I. & Felsenfeld, G. J. biol. Chem. 13, 7730–7736 (1982).

    Google Scholar 

  10. Finch, J. T. & Klug, A. Proc. natn. Acad. Sci. U.S.A. 73, 1897–1901 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Musich, P. R., Maio, J. & Brown, F. L. J. molec. Biol. 117, 651–677 (1977).

    Article  Google Scholar 

  12. Fittler, F. & Zachau, H. G. Nucleic Acids. Res. 7, 1–17 (1979).

    Article  CAS  Google Scholar 

  13. Pruitt, S. L. & Grainger, R. M. Cell 23, 711–720 (1981).

    Article  CAS  Google Scholar 

  14. Lawson, G. M., Tsai, M-J. & O'Malley, B. W. Biochemistry 19 4403–4411 (1980).

    Article  CAS  Google Scholar 

  15. Dolan, M., Sugarman, B. J., Dodgeson, J. B. & Engel, D. Cell 24, 668–677 (1981).

    Article  Google Scholar 

  16. Wozney, J., Hanahan, D., Tate, V., Boedtker, H. & Doty, P. Nature 294, 129–135 (1981).

    Article  ADS  CAS  Google Scholar 

  17. McReynolds, L. A., Catterall, J. & O'Malley, B. W. Gene 2, 217–230 (1978).

    Article  Google Scholar 

  18. Ginder, G. D., Wood, W. I. & Felsenfeld, G. J. biol. Chem. 254, 8099–8102 (1979).

    CAS  PubMed  Google Scholar 

  19. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  20. Rigby, P. W. J., Dickmann, M., Rhodes, C. & Berg, D. J. molec. Biol. 113, 237–251 (1977).

    Article  CAS  Google Scholar 

  21. Denhardt, D. Biochem. biophys. Res. Commun. 23, 641–646 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, T., Mills, F., Allan, J. et al. Selective unfolding of erythroid chromatin in the region of the active β-globin gene. Nature 306, 709–712 (1983). https://doi.org/10.1038/306709a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/306709a0

  • Springer Nature Limited

This article is cited by

Navigation