Skip to main content
Log in

Polyamines regulate calcium fluxes in a rapid plasma membrane response

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Activation of cell-surface receptors often evokes changes in Ca2+ fluxes leading to an increase in cytosolic Ca2+, a generally accepted mediator of many cell responses1–3. The molecular mechanisms by which surface agonists elicit these changes in Ca2+ flux have remained elusive. An increase in the polyamines putrescine, spermidine and spermine, and their rate-regulating, synthetic enzyme ornithine decarboxylase (ODC), is one of the earliest events that occur during cell growth, replication and differentiation4–6. However, the precise physiological roles of the polyamines remain enigmatic4–6. Recently, we found that testosterone induces an early (<60s), Ca2+- and receptor-dependent stimulation of endocytosis, hexose transport and amino acid transport in mouse kidney cortex involving the proximal tubules7. This response is associated with increased Ca2+ fluxes and a mobilization of intracellular calcium, and is thought to represent a direct, receptor-mediated action of testosterone on the surface membrane7,8. Polyamine synthesis was previously found to be essential for the long-term effects of testosterone on mouse kidney9. We now report that testosterone evokes a rapid (<30 s), transient increase in ODC activity and a sustained increase in polyamines in kidney cortex. This polyamine synthesis is obligatory for stimulation of membrane transport functions and Ca2+ fluxes. These findings form the basis for a new theory of information flow in stimulus–response coupling in which the polyamines serve as messengers to generate a Ca2+ signal by increasing Ca2+ influx and mobilizing intracellular calcium via a cation-exchange reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmussen, H. & Goodman, D. B. P. Physiol. Rev. 57, 421–509 (1977).

    Article  CAS  Google Scholar 

  2. Bygrave, F. L. Biol. Rev. 53, 43–79 (1978).

    Article  CAS  Google Scholar 

  3. Putney, J. W. Jr Physiol. Rev. 30, 209–245 (1979).

    Google Scholar 

  4. Jänne, J., Pösö, H. & Raina, A. Biochim. biophys. Acta 473, 241–293 (1978).

    PubMed  Google Scholar 

  5. Williams-Ashman, H. G. & Canellakis, Z. N. Perspectives biol. Med. 22, 421–453 (1979).

    Article  CAS  Google Scholar 

  6. Heby, O. Differentiation 19, 1–29 (1981).

    Article  CAS  Google Scholar 

  7. Koenig, H., Goldstone, A. & Lu, C. Y. Biochem. biophys. Res. Commun. 106, 346–353 (1982).

    Article  CAS  Google Scholar 

  8. Goldstone, A., Koenig, H. & Lu, C. Y. Biochim. biophys. Acta 762, 366–371 (1983).

    Article  CAS  Google Scholar 

  9. Goldstone, A., Koenig, H. & Lu, C. Y. Biochem. biophys. Res. Commun. 104, 165–172 (1982).

    Article  CAS  Google Scholar 

  10. Metcalf, B. W. et al. J. Am. chem. Soc. 100, 2551–2553 (1978).

    Article  CAS  Google Scholar 

  11. Koenig, H., Goldstone, A. & Lu, C. Y. Fedn Proc. 41, 1598 (1982).

    Google Scholar 

  12. Heller, J. S. & Canellakis, E. S. J. cell. Physiol. 107, 209–217 (1981).

    Article  CAS  Google Scholar 

  13. Standen, N. B. & Stanfield, P. R. Proc. R. Soc. B217, 101–110 (1982).

    ADS  CAS  Google Scholar 

  14. Nawata, H., Yamamoto, R. S. & Poirier, L. A. Life Sci. 26, 689–698 (1980).

    Article  CAS  Google Scholar 

  15. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, J. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

  16. Dhurhuus, R. Analyt. Biochem. 13, 352–355 (1981).

    Article  Google Scholar 

  17. Steinman, R. M. & Cohn, J. A. J. Cell Biol. 55, 186–204 (1972).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenig, H., Goldstone, A. & Lu, C. Polyamines regulate calcium fluxes in a rapid plasma membrane response. Nature 305, 530–534 (1983). https://doi.org/10.1038/305530a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305530a0

  • Springer Nature Limited

This article is cited by

Navigation