Skip to main content
Log in

Liquid–gas phase transition in nuclear matter

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Every self-bound Fermi liquid will exhibit a liquid–gas phase equilibrium at low temperatures, because the pressure is positive at low densities due to the kinetic energy of degeneracy, and falls to zero again at the equilibrium density. Nuclear matter is seldom found under conditions of two-phase equilibrium, however: in usual nuclear reactions, a heated (‘compound’) nucleus is produced out of equilibrium with its surroundings, which are at a much lower temperature. The most familiar example of a two-phase equilibrium occurs in the crust of neutron stars inside the neutron-drip line1, at temperatures of less than an MeV. In supernovas, in the crucial moments when the implosion is reversed to an explosion, densities comparable to those of neutron stars may be attained with associated temperatures of 5 to 10 MeV. An accurate knowledge of the properties of nuclear matter under these conditions is essential to the understanding of supernova dynamics2. This communication shows how laboratory observations with the latest generation of nuclear accelerators can be used to infer the surface tension of the liquid–gas interface in nuclear matter–an essential ingredient of the equation of state for which a reliable theoretical model is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baym, G. & Pethick, C. A. Rev. nuclear Sci. 25, 27–77 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Brown, G. E., Bethe, H. A. & Baym, G. Nuclear Phys. A375, 481–532 (1982).

    Article  ADS  Google Scholar 

  3. Fermi, E. Notes on Thermodynamics and Statistics, 135–136 (University of Chicago Press, 1966).

    Google Scholar 

  4. Fisher, M. E. Physics 3, 255–283 (1967).

    Article  Google Scholar 

  5. Bethe, H. A. Rev. mod. Phys. 9, 690 (1937).

    Article  Google Scholar 

  6. Stocker, W. & Burzlaff, J. Nuclear Phys. A202, 265–273 (1973).

    Article  ADS  CAS  Google Scholar 

  7. Curtin, M. W., Toki, H. & Scott, D. K. Phys. Lett. 123B, 289–292 (1983).

    Article  Google Scholar 

  8. Finn, J. E. et al. Phys. Rev. Lett. 49, 1321–1324 (1982).

    Article  ADS  CAS  Google Scholar 

  9. das Gupta, S. & Mekjian, A. Z. Phys. Rep. 72C, 131–183 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Lamb, D. Q., Lattimer, J. M., Pethick, C. & Ravenhall, D. G. Nuclear Phys. A360, 459–482 (1981).

    Article  ADS  Google Scholar 

  11. Friedman, B. & Pandharipande, V. R. Nuclear Phys. A361, 502–520 (1981).

    Article  ADS  Google Scholar 

  12. Siemens, P. J. & Rasmussen, J. O. Phys. Rev. Lett. 42, 880–882 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Siemens, P. J. & Kapusta, J. I. Phys. Rev. Lett. 43, 1486–1489 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Bertsch, G. & Siemens, P. J. Phys. Lett. B126, 9 (1983).

    Article  Google Scholar 

  15. Schulz, H., Munchow, L., Ropke, G. & Schmidt, M. Phys. Lett. 119B, 12–16 (1982).

    Article  Google Scholar 

  16. Bertsch, G. & Cugnon, J. Phys. Rev. C24, 2514–2520 (1981).

    ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siemens, P. Liquid–gas phase transition in nuclear matter. Nature 305, 410–412 (1983). https://doi.org/10.1038/305410a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305410a0

  • Springer Nature Limited

This article is cited by

Navigation