Skip to main content
Log in

The mechanism of kainic acid neurotoxicity

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The putative excitatory transmitters glutamate and aspartate, as well as their excitatory analogues, can kill neurones in the central nervous system and may thus be involved in the pathogenesis of various neurodegenerative disorders1. Several studies have suggested that postsynaptic receptors are important in the mechanism of toxicity2. However, presynaptic factors might also be involved because, in some brain areas, the neurotoxicity of kainate (a potent structural analogue of glutamate) is greatly reduced following elimination of afferent excitatory innervation3–6, even though the postsynaptic excitatory potency of kainate may be unaltered in these conditions7. The supply of glutamate from the afferent nerve endings has been suggested to be a necessary factor3,6,8. Recently, Ferkany, Zaczec and Coyle9 concluded from studies on slices of mouse cerebellum that kainate activates presynaptic kainate receptors on parallel fibre terminals to release glutamate and that it is the postsynaptic interaction between kainate and the released amino acid that is instrumental in causing neuronal necrosis. The more direct evidence we report here does not support these conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coyle, J. T. et al. Neurosci. Res. Prog. Bull. 19, 329–427 (1981).

    Google Scholar 

  2. Olney, J. W. in Kainic Acid as a Tool in Neurobiology (eds McGeer, E. G., Olney, J. W. & McGeer, P. L.) 95–121 (Raven, New York, 1978).

    Google Scholar 

  3. Biziere, K. & Coyle, J. T. Neurosci. Lett. 8, 303–310 (1978).

    Article  CAS  Google Scholar 

  4. McGeer, E. G., McGeer, P. L. & Singh, K. Brain Res. 139, 381–383 (1978).

    Article  CAS  Google Scholar 

  5. Kohler, C., Schwarcz, R. & Fuxe, Neurosci. Lett. 10, 241–246 (1978).

    Article  CAS  Google Scholar 

  6. Streit, P., Stella, M. & Cuenod, M. Brain Res. 187, 45–57 (1980).

    Google Scholar 

  7. McLennan, H. Neurosci. Lett. 18, 313–316 (1980).

    Article  CAS  Google Scholar 

  8. McGeer, E. G. & McGeer, P. L. Int. Rev. Neurobiol. 22, 173–204 (1981).

    Article  CAS  Google Scholar 

  9. Ferkany, J. W., Zaczec, R. & Coyle, J. T. Nature 298, 757–759 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Garthwaite, J., Woodhams, P. L., Collins, M. J. & Balazs, R. Brain Res. 173, 373–377 (1979).

    Article  CAS  Google Scholar 

  11. Garthwaite, J. & Wilkin, G. P. Neuroscience 7, 2499–2514 (1982).

    Article  CAS  Google Scholar 

  12. Okamoto, K. & Quastel, J. H. Proc. R. Soc. B 184, 83–90 (1973).

    ADS  CAS  Google Scholar 

  13. Garthwaite, J. & Gilligan, G. J. Neuroscience (in the press).

  14. Ferkany, J. W. & Coyle, J. T. J. Pharmac. exp. Ther. 255, 399–406 (1983).

    Google Scholar 

  15. Krespan, B., Berl, S. & Nicklas, W. J. J. Neurochem. 38, 509–518 (1982).

    Article  CAS  Google Scholar 

  16. Monaghan, D. T. & Cotman, C. W. Brain Res. 252, 91–100 (1982).

    Article  CAS  Google Scholar 

  17. Garthwaite, J. Neuroscience 7, 2491–2497 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garthwaite, J., Garthwaite, G. The mechanism of kainic acid neurotoxicity. Nature 305, 138–140 (1983). https://doi.org/10.1038/305138a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/305138a0

  • Springer Nature Limited

This article is cited by

Navigation