Skip to main content
Log in

Tyrosine hydroxylase activation in depolarized dopaminergic terminals—involvement of Ca2+ -dependent phosphorylation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Tyrosine hydroxylase (tyrosine 3-monoxygenase, EC 1.14.16.2, TH) catalyses the rate limiting step of catecholamine biosynthesis, In vitro, TH from central dopaminergic1–4 as well as from central5,6 and peripheral6,7 noradrenergic neurones can be activated by a cyclic AMP-dependent phosphorylation process and several authors7–9 have proposed that this process can be responsible for the in vivo activation of TH resulting from the electrical stimulation of these neurones. However, this is unlikely to be the case for TH in central dopaminergic neurones because depolarization produces an enzyme activation which is additive with that due to the cyclic AMP-dependent phosphorylation process10–12. In the case of tryptophan hydroxylase in central serotoninergic neurones, recent evidence indicates that a Ca2+-dependent instead of a cyclic AMP-dependent phosphorylation process is responsible for the increased enzyme activity triggered by depolarization13. This finding led us to investigate whether a Ca2+-dependent phosphorylation process also accounts for the activation of TH inside depolarized dopaminergic terminals. We found that soluble TH from the rat striatum could be activated by a Ca2+-dependent process in optimal conditions for producing the phosphorylation of proteins. This activation corresponded exactly to that resulting from the incubation of striatal slices in K+-enriched medium and indeed TH activity from depolarized dopaminergic terminals could not be further stimulated by Ca2+-dependent phosphorylating conditions. In contrast, in situ TH activation by cyclic AMP-dependent phosphorylation (triggered by dibutyryl cyclic AMP or forskolin) did not prevent subsequent stimulation by Ca2+-dependent phosphorylation. These findings suggest that TH activation in depolarized dopaminergic terminals involves a Ca2+-dependent phosphorylation process similar to that controlling tryptophan hydroxylase activity in serotoninergic neurones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lovenberg, W., Bruckwick, E. A. & Hanbauer, I. Proc. natn. Acad. Sci. U.S.A. 72, 2955–2958 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Joh, T. H., Park, D. H. & Reis, D. J. Proc. natn. Acad. Sci. U.S.A. 75, 4744–4748 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Vrana, K. E., Allhiser, C. L. & Roskoski, R. Jr, J. Neurochem. 36, 92–100 (1981).

    Article  CAS  Google Scholar 

  4. Pollock, R. J., Kapatos, G. & Kaufman, S. J. Neurochem. 37, 855–860 (1981).

    Article  CAS  Google Scholar 

  5. Acheson, A. L., Kapatos, G. & Zigmond, M. J. Life Sci. 28, 1407–1420 (1981).

    Article  CAS  Google Scholar 

  6. Weiner, N. Aromatic Amino Acid Hydroxylases and Mental Disease (ed. Youdim, M. B. H.) 141–190 (Wiley, Chichester, 1979).

    Google Scholar 

  7. Weiner, N., Lee, F. L., Meligeni, J. & Tank, A. W. Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects (eds Usdin, E., Weiner, N. & Youdim, M. B. H.) 3–14 (Macmillan, London, 1981).

    Book  Google Scholar 

  8. Murrin, L. C., Morgenroth, V. H. III & Roth, R. H. Molec. Pharmac. 12, 1070–1081 (1976).

    CAS  Google Scholar 

  9. Roth, R. H. & Salzman, P. M. Structure and Function of Monoamine Enzymes (eds Usdin, E., Weiner, N. & Youdim, M. B, H.) 149–168 (Dekker, New York, 1977).

    Google Scholar 

  10. Goldstein, M., Bronaugh, R. L., Ebstein, B. & Roberge, C. Brain Res. 109, 563–574 (1976).

    Article  CAS  Google Scholar 

  11. Bustos, G. & Roth, R. H. Biochem. Pharmac. 28, 3026–3028 (1979).

    Article  CAS  Google Scholar 

  12. Simon, J. R. & Roth, R. H. Molec. Pharmac. 16, 224–233 (1979).

    CAS  Google Scholar 

  13. Hamon, M., Bourgoin, S., Artaud, F. & Glowinski, J. J. Neurochem. 33, 1031–1042 (1979).

    Article  CAS  Google Scholar 

  14. Seamon, K. B., Padgett, W. & Daly, J. W. Proc. natn. Acad. Sci. U.S.A. 78, 3363–3367 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Yamauchi, T. & Fujisawa, H. J. biol. Chem. 254, 6408–6413 (1979).

    CAS  PubMed  Google Scholar 

  16. Kakiuchi, S., Rail, T. W. & Mcllwain, H. J. Neurochem. 16, 485–491 (1969).

    Article  CAS  Google Scholar 

  17. Hamon, M., Bourgoin, S., Artaud, F. & Héry, F. J. Neurochem. 28, 811–818 (1977).

    Article  CAS  Google Scholar 

  18. Levin, R. M. & Weiss, B. Molec. Pharmac. 12, 581–589 (1976).

    CAS  Google Scholar 

  19. Raese, J. D., Makk, G. & Barchas, J. D. Function and Regulation of Monoamine Enzymes: Basic and Clinical Aspects (eds Usdin, E., Weiner, N. & Youdim, M. B. H.) 105–114 (Macmillan, London, 1981).

    Book  Google Scholar 

  20. Yamauchi, T. & Fujisawa, H. Biochem. biophys. Res. Commun. 100, 807–813 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Mestikawy, S., Glowinski, J. & Hamon, M. Tyrosine hydroxylase activation in depolarized dopaminergic terminals—involvement of Ca2+ -dependent phosphorylation. Nature 302, 830–832 (1983). https://doi.org/10.1038/302830a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302830a0

  • Springer Nature Limited

This article is cited by

Navigation