Skip to main content
Log in

Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Nervous or hormonal stimulation of many exocrine glands evokes release of cellular K+ (ref. 1), as originally demonstrated in mammalian salivary glands2,3, and is associated with a marked increase in membrane conductance1,4,5. We now demonstrate directly, by using the patch-clamp technique6, the existence of a K+ channel with a large conductance localized in the basolateral plasma membranes of mouse and rat salivary gland acinar cells. The K+ channel has a conductance of ∼250 pS in the presence of high K+ solutions on both sides of the membrane. Although mammalian exocrine glands are believed not to possess voltage-activated channels1,7, the probability of opening the salivary gland K+ channel was increased by membrane depolarization. The frequency of channel opening, particularly at higher membrane potentials, was increased markedly by elevating the internal ionized Ca2+ concentration, as previously shown for high-conductance K+ channels from cells of neural origin8–10. The Ca2+ and voltage-activated K+ channel explains the marked cellular K+ release that is characteristically observed when salivary glands are stimulated to secrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petersen, O. H. The Electrophysiology of Gland Cells (Academic, London, 1980).

    Google Scholar 

  2. Burgen, A. S. V. J. Physiol., Lond. 132, 20–39 (1956).

    Article  CAS  Google Scholar 

  3. Petersen, O. H. J . Physiol., Lond. 208, 431–447 (1970).

    Article  CAS  Google Scholar 

  4. Nishiyama, A. & Petersen, O. H. J. Physiol., Lond. 242, 173–188 (1974).

    Article  CAS  Google Scholar 

  5. Ginsborg, B. L., House, C. R. & Silinsky, E. J. Physiol., Lond. 236, 723–731 (1974).

    Article  CAS  Google Scholar 

  6. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  7. Ginsborg, B. L. & House, C. R. A. Rev. Biophys. Bioengng 9, 55–80 (1980).

    Article  CAS  Google Scholar 

  8. Marty, A. Nature 291, 497–500 (1981).

    Article  ADS  CAS  Google Scholar 

  9. Pallotta, B. S., Magleby, K. L. & Barrett, J. N. Nature 293, 471–474 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Barrett, J. N., Magleby, K. L. & Palotta, B. S. J. Physiol., Lond. 331, 211–230 (1982).

    Article  CAS  Google Scholar 

  11. Maruyama, Y. & Petersen, O. H. Nature 299, 159–161 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Maruyama, Y. & Petersen, O. H. Nature 300, 61–63 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Pedersen, G. L. & Petersen, O. H. J. Physiol., Lond. 234, 217–227 (1973).

    Article  CAS  Google Scholar 

  14. Wakui, M. & Nishiyama, A. Pflügers Arch. ges. Physiol. 386, 251–259 (1980).

    Article  CAS  Google Scholar 

  15. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Putney, J. W. Pharmac. Rev. 30, 209–245 (1979).

    Google Scholar 

  18. Gallacher, D. V. & Petersen, O. H. J. Physiol., Lond. 305, 43–57 (1980).

    Article  CAS  Google Scholar 

  19. Frizzell, R. A., Field, M. & Schultz, S. G. Am. J. Physiol. 236, F1–F8 (1979).

    Article  CAS  Google Scholar 

  20. Chipperfield, A. R. Nature 286, 281–282 (1980).

    Article  ADS  CAS  Google Scholar 

  21. Greger, R. & Schlatter, E. Pflügers Arch. ges. Physiol. 392, 92–94 (1981).

    Article  CAS  Google Scholar 

  22. Musch, M. W. et al. Nature 300, 351–353 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maruyama, Y., Gallacher, D. & Petersen, O. Voltage and Ca2+-activated K+ channel in baso-lateral acinar cell membranes of mammalian salivary glands. Nature 302, 827–829 (1983). https://doi.org/10.1038/302827a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/302827a0

  • Springer Nature Limited

This article is cited by

Navigation