Skip to main content
Log in

Accelerator mass spectrometry measurement of cosmogenic 26Al in terrestrial and extraterrestrial matter

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Cosmogenic 26Al (half life = 7.2 × 105 yr) and 10Be (1.5 × 106 yr) are produced continually in the atmosphere by cosmic rays. They are fixed on aerosol particles and, after a relatively short time (∼1 yr) precipitate to the Earth's surface, and from there into various geophysical reservoirs. The possibility of using this pair of isotopes as a dating tool, independent of cosmic ray intensity variations, was discussed some time ago1. However, except for several rare exceptions2,3 the very low activities of these isotopes, especially 26Al, have dissuaded workers from such studies by classical radioactive counting techniques. The development of accelerator mass spectrometry offers to change this situation dramatically. Cosmogenically produced 10Be has already been measured by several groups using accelerator mass spectrometry4. While the technique has also been used to detect artificially produced5–7 and extraterrestrial8, 26Al the 26Al/27Al ratio in each case was several orders of magnitude greater than that expected in natural terrestrial samples. We report here the first accelerator mass spectrometry measurements of 26Al in natural terrestrial samples, and give a value for the atmospheric production ratio of 26Al/10Be, an essential parameter for use of this pair as an absolute dating tool. To demonstrate the potential of our technique for measuring 26Al in small quantities of extraterrestrial material, we have also measured this isotope in milligramme-size samples of lunar soil. Finally, by measuring the absolute 26Al/27Al ratio of two samples whose radioactive disintegration rate was known, we have obtained an independent check on the 26Al half life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lal, D. J. oceanogr. Soc. Japn. 20th Anniv. Vol. 18, 600–614 (1962).

    Google Scholar 

  2. Reyss, J. L., Yokoyama, Y. & Tanaka, S. Science 193, 1119–1121 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Guichard, F., Reyss, J. L. & Yokoyama, Y. Nature 272, 155–156 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Proc. Symp. on Accelerator Mass Spectrometry (Argonne National Laboratory Rep. ANL/PHY-81-1, 1981).

  5. Raisbeck, G. M., Yiou, F. & Stephan, C. J. phys. Lett. 40, L241 (1979).

    Article  Google Scholar 

  6. Kilius, L. R. et al. Nature 282, 488 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Paul, M., Henning, W., Kutschera, W., Stephenson, E. J. & Yntema, J. L. Phys. Lett. 94 B 303 (1980).

    Article  Google Scholar 

  8. Thomas, J. H., Parker, P., Herzog, G. & Pal, D. Nucl. Instrum. Meth. (in the press).

  9. Leifer, R., Tookel, L. E. & Larson, R. USDOE Rep. EML-375 (1981).

  10. Raisbeck, G. M. et al. Geophys. Res. Lett. 8, 1015–1018 (1981).

    Article  ADS  CAS  Google Scholar 

  11. Middleton, R. in Proc. Symp. of Northeastern Accelerator Personal (ed. Billen, J. H.) 134 (University of Wisconsin, 1980).

    Google Scholar 

  12. Klein, J., Middleton, R. & Tang, H. Q. Nucl. Instrum. Meth. 193, 601 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Raisbeck, G. M., Yiou, F., Fruneau, M. & Loiseaux, J. M. Science 202, 215 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Reyss, J. L., Yokoyama, Y. & Guichard, F. Earth planet. Sci. Lett. 53, 203 (1981).

    Article  ADS  CAS  Google Scholar 

  15. McCorkell, R., Fireman, E. L. & Langway, C. C. Jr, Science 158, 1690 (1967).

    Article  ADS  CAS  Google Scholar 

  16. Raisbeck, G. M. & Yiou, F. Phys. Rev. C9, 1385 (1974).

    Article  ADS  CAS  Google Scholar 

  17. Raisbeck, G. M. & Yiou, F. Nucl. Instrum. Meth. 196, 483 (1981).

    Article  ADS  Google Scholar 

  18. Apollo Preliminary Science Rep., NASA, SP-315, 7 (1972).

  19. Gibson, E. K. Jr & Moore, G. W. Science 179, 69 (1973).

    Article  ADS  CAS  Google Scholar 

  20. Bogard, D. D., Nyqiust, L. E., Hirsch, W. C. & Moore, D. R. Earth planet. Sci. Lett. 21, 52 (1973).

    Article  ADS  CAS  Google Scholar 

  21. Viste, E. & Anders, E. J. geophys. Res. 67, 2913 (1962).

    Article  ADS  CAS  Google Scholar 

  22. Pal, D. K., Tuniz, C., Moniot, R. K., Kruse, T. H. & Herzog, G. F. Science 218, 787 (1982).

    Article  ADS  CAS  Google Scholar 

  23. Nishiizumi, K., Regnier, S. & Marti, K. Earth planet. Sci. Lett. 50, 156 (1980).

    Article  ADS  CAS  Google Scholar 

  24. Müller, O., Hampel, W., Kirston, T. & Herzog, G. F. Geochim. cosmochim. Acta 45, 447 (1981).

    Article  ADS  Google Scholar 

  25. Rightmire, R. A., Kohman, T. P. & Hintenberger, H. Z. Naturforsch. 13 a 847 (1958).

    ADS  Google Scholar 

  26. Samworth, E. A., Warburton, E. K. & Engelbertink, G. A. P. Phys. Rev. C5, 138 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raisbeck, G., Yiou, F., Klein, J. et al. Accelerator mass spectrometry measurement of cosmogenic 26Al in terrestrial and extraterrestrial matter. Nature 301, 690–692 (1983). https://doi.org/10.1038/301690a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301690a0

  • Springer Nature Limited

Navigation