Skip to main content
Log in

T-system optical signals associated with inward rectification in skeletal muscle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The resting potential of many excitable cells, including skeletal muscle1–4, cardiac muscle5,6, nerve cell bodies7 and egg cells8, is determined by a resting potassium conductance which shows inward rectification, allowing potassium ions to move more readily inward across the cell membrane than outward. In skeletal muscle, where inward rectification has been extensively studied, a large part of this conductance is located in the T-system membranes2,3,9–11. However, to date, only the kinetic and voltage-dependent properties of this conductance have been studied from analyses of the membrane potential or current recorded at the fibre surface. We report here measurements, obtained using a voltage-sensing dye, of potential changes in the T-system membranes associated with the inwardly rectifying K+ current. Our results show that this conductance alters the time course and significantly attenuates the amplitude of the potential change across the tubular membranes. These optical data provide new evidence for the presence of this conductance in the T-system and, when analysed using a radial cable model for the T-system, provide an estimate of the distribution of the inward rectifier conductance over the surface and T-system which is in agreement with estimates obtained by other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Katz, B. Archs Sci. Physiol. 3, 283–299 (1949).

    Google Scholar 

  2. Hodgkin, A. L. & Horowicz, P. J. Physiol., Lond. 148, 127–160 (1959).

    Article  CAS  Google Scholar 

  3. Almers, W. J. Physiol., Lond. 225, 33–56 (1972).

    Article  CAS  Google Scholar 

  4. Aimers, W. J. Physiol., Lond. 225, 57–83 (1972).

    Article  Google Scholar 

  5. Hall, A. E., Mutter, O. F. & Noble, D. J. Physiol., Lond. 166, 225–240 (1963).

    Article  CAS  Google Scholar 

  6. Cleemann, L. & Morad, M. J. Physiol., Lond. 286, 113–143 (1979).

    Article  CAS  Google Scholar 

  7. Kandel, E. R. & Taue, L. J. Physiol., Lond. 183, 287–304 (1966).

    Article  CAS  Google Scholar 

  8. Hagiwara, S. & Takahashi, K. J. membrane Biol. 18, 61–80 (1974).

    Article  CAS  Google Scholar 

  9. Eisenberg, R. S. & Gage, P. W. J. gen. Physiol. 53, 279–297 (1969).

    Article  CAS  Google Scholar 

  10. Schneider, M. F. & Chandler, W. K. J. gen. Physiol. 67, 125–163 (1976).

    Article  CAS  Google Scholar 

  11. Standen, N. B. & Stanfield, P. R. J. Physiol., Lond. 280, 169–191 (1978).

    Article  CAS  Google Scholar 

  12. Hille, B. & Campbell, D. T. J. gen. Physiol. 67, 265–293 (1976).

    Article  CAS  Google Scholar 

  13. Vergara, J., Bezanilla, F. & Salzberg, B. M. J. gen. Physiol. 72, 775–800 (1978).

    Article  CAS  Google Scholar 

  14. Heiny, J. A. & Vergara, J. J. gen. Physiol. 80, 203–230 (1982).

    Article  CAS  Google Scholar 

  15. Nakajima, S. & Gilai, A. J. gen. Physiol. 76, 729–750 (1980).

    Article  CAS  Google Scholar 

  16. Stanfield, P. R. J. Physiol., Lond. 209, 231–256 (1970).

    Article  CAS  Google Scholar 

  17. Gay, L. A. & Stanfield, P. R. Nature 267, 169–170 (1977).

    Article  ADS  CAS  Google Scholar 

  18. Ross, W. N. et al. J. membrane Biol. 33 141–183 (1977).

    Article  CAS  Google Scholar 

  19. Falk, G. & Fatt, P. Proc. R. Soc. 160, 69–123 (1964).

    ADS  CAS  Google Scholar 

  20. Adrian, R. H., Chandler, W. K. & Hodgkin, A. L. J. Physiol., Lond. 204, 207–230 (1969).

    Article  CAS  Google Scholar 

  21. Adrian, R. H. & Peachey, L. D. J. Physiol., Lond. 235, 103–131 (1973).

    Article  CAS  Google Scholar 

  22. Crank, J. The Mathematics of Diffusion (Clarendon, Oxford, 1956).

    MATH  Google Scholar 

  23. Gerald, C. F. Applied Numerical Analysis (Addison-Wesley, London, 1978).

    Google Scholar 

  24. Ciani, S., Krasne, S., Miyazaki, S. & Hagiwara, S. J. membrane Biol. 44, 103–134 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heiny, J., Ashcroft, F. & Vergara, J. T-system optical signals associated with inward rectification in skeletal muscle. Nature 301, 164–166 (1983). https://doi.org/10.1038/301164a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301164a0

  • Springer Nature Limited

This article is cited by

Navigation