Skip to main content

Advertisement

Log in

Latitudinal displacement from main moisture source controls δ18O of snow in coastal Antarctica

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

δ18O in polar precipitation is usually correlated with the condensation temperature1,2. Here, observations of the oxygen isotopic composition of coastal Antarctic precipitation at Syowa Station3,4 during 1974 are re-evaluated, and it is demonstrated that monthly average δ18O is more closely associated with the preceding month's mean temperature than that at the time of sampling. Linear regression indicates that the lag between temperature and isotopic ratio occurs because sea ice extent is a dominant factor for δ18O values in Antarctic precipitation (Fig. 1). The annual growth and decay of Antarctic sea ice parallels the migration of the primary moisture source region which is located in the vicinity of the 0 or 1 °C sea surface isotherm We conclude that the meridional distance from the primary moisture source is the main determinant of δ18O values in coastal Antarctic precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, L. & Deutsch, S. Earth planet. Sci. Lett. 3, 267–274 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Picciotto, E., De Maere, X. & Friedman, I. Nature 187, 857–859 (1960).

    Article  ADS  CAS  Google Scholar 

  3. Kato, K. JARE Data Rep. 36 156–167 (1977).

    Google Scholar 

  4. Kato, K. Nature 272, 46–48 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Koerner, R. M. J. Glacial. 22, 25–41 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Dansgaard, W. Tellus 16, 436–468 (1964).

    Article  ADS  Google Scholar 

  7. Robin, G. de Q. proc. Canberra Symp. 207–216 (IAHS Publ. No. 131, 1981).

  8. Kato, K. Antarctic Rec. 67, 124–135 (1979).

    Google Scholar 

  9. Zwally, H. J. et al. 4th NASA Weather and Climate Program Science Review (ed. Kreins, E. R.) 335–340 (NASA, Washington DC, 1979).

    Google Scholar 

  10. Cavalieri, D. J. & Parkinson, C. L. Mon. Weath. Rev. 109, 2323–2336 (1981).

    Article  ADS  Google Scholar 

  11. Gonfiantini, R., Togliatti, V., Tongiorgi, E., De Breuck, W. & Picciotto, E. J. geophys. Res. 68, 3791–3798 (1963).

    Article  ADS  CAS  Google Scholar 

  12. Kato, K., Watanabe, O. & Satow, K. Antarctic Rec. 67, 136–151 (1979).

    Google Scholar 

  13. Bromwich, D. H. Antarctic J. U.S. (in the press).

  14. Dansgaard, W., Johnsen, S. J., Clausen, H. B. & Gundestrup, N. Meddr. Grunland 197, 2 (1973).

    Google Scholar 

  15. Maxwell, J. B. Arctic 34, 3, 225–240 (1981).

    Google Scholar 

  16. Friedman, I., Redfield, A. C., Schoen, B. & Harris, J. Rev. Geophys. 2, 177–224 (1964).

    Article  ADS  CAS  Google Scholar 

  17. Japan Meteorological Agency, Antarctic Met. Data 15, 1–215 (1977).

  18. Fleet Weather Facility, Antarctic Ice Charts 1973–1974 (Suitland, Maryland, 1975).

  19. Streten, N. A. & Pike, D. J. Arch. Met. Geophys. Bioklim. A 29, 279–299 (1980).

    Article  Google Scholar 

  20. Keeley, J. R. & Taylor, J. D. Data Products from First GARP Global Experiment (Marine Environmental Data Service, Ottawa, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromwich, D., Weaver, C. Latitudinal displacement from main moisture source controls δ18O of snow in coastal Antarctica. Nature 301, 145–147 (1983). https://doi.org/10.1038/301145a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301145a0

  • Springer Nature Limited

This article is cited by

Navigation