Skip to main content
Log in

Inhomogeneity parameter of a homogeneous Earth

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Adiabatic and chemically homogeneous solid regions of the Earth are expected to appear otherwise because of the bulk attenuation to seismic waves that occurs in polyphase aggregates such as the Earth's mantle. Because the seismologically measured bulk modulus is only partially relaxed compared with the hydrostatic pressure–density relation (or relaxed modulus) of the Earth's mantle, an apparently nonadiabatic contribution1 to the geotherm is expected to be inferred from seismological observations on regions of the mantle that are well mixed by vigorous convection. Using a recent analysis of bulk attenuation in polyphase assemblages2, we estimate the total nonadiabatic contribution to the geotherm through the lower mantle to be approximately −300 to −800 K. The magnitude of this effect is significant in that it is of the same order as the temperature change within a thermal boundary layer, which represents the largest perturbation of the geotherm resulting from convection within the Earth. Moreover, if the lower mantle is truly homogeneous and adiabatic, it should appear to be subadiabatic according to the seismological data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birch, F. J. geophys. Res. 57, 227–286 (1952).

    Article  ADS  CAS  Google Scholar 

  2. Heinz, D. L., Jeanloz, R. & O'Connell, R. J. J. geophys. Res. 87, 7772–7778 (1982).

    Article  ADS  Google Scholar 

  3. Dziewonski, A. M., Hales, A. L. & Lapwood, E. R. Phys. Earth planet. Inter. 10, 12–48 (1975).

    Article  ADS  Google Scholar 

  4. Dziewonski, A. M. & Anderson, D. L. Phys. Earth planet. Inter. 25, 297–356 (1981).

    Article  ADS  Google Scholar 

  5. Bullen, K. E. The Earth's Density (Chapman & Hall, London, 1975).

    Book  Google Scholar 

  6. Verhoogen, J. Energetics of the Earth (U.S. National Academy of Sciences, Washington DC, 1980).

    Google Scholar 

  7. Jarvis, G. & McKenzie, D. P. J. Fluid Mech. 96, 515–583 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  8. Jeanloz, R. & Richter, F. M. J. geophys. Res. 84, 5497–5504 (1979).

    Article  ADS  Google Scholar 

  9. Shankland, T. J. & Brown, J. M. EOS 61, 1108 (1980).

    Google Scholar 

  10. Brown, J. M. & Shankland, T. J. Geophys. J. R. astr. Soc. 66, 579–596 (1981).

    Article  ADS  Google Scholar 

  11. Bullen, K. E. Geophys. J. 7, 584–592 (1963).

    Article  ADS  CAS  Google Scholar 

  12. Masters, G. Geophys. J. R. astr. Soc. 57, 507–534 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Thomsen, L. J. geophys. Res. 77, 315–327 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Kumazawa, M. J. geophys. Res. 74, 5311–5320 (1969).

    Article  ADS  Google Scholar 

  15. Budiansky, B. J. Mech. Phys. Solids 13, 223–227 (1965).

    Article  ADS  Google Scholar 

  16. Hill, R. J. Mech. Phys. Solids 13, 213–222 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  17. Budiansky, B. & O'Connell, R. J. Solid Earth Geophysics and Geotechnology, AMD 42 (ed. Nemat Nasser, S.) (American Society of Mechanical Engineering, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinz, D., Jeanloz, R. Inhomogeneity parameter of a homogeneous Earth. Nature 301, 138–139 (1983). https://doi.org/10.1038/301138a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/301138a0

  • Springer Nature Limited

Navigation