Skip to main content
Log in

Relaxation of muscle fibres by photolysis of caged ATP

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

A novel method has been developed for studying the reaction kinetics of the force-generating mechanism in muscle. Inert photolabile precursors of ATP or ADP are incorporated into muscle fibres having their surface membrane barrier removed. The nucleotide is then rapidly liberated by laser pulse photolysis. This circumvents the limitation in time resolution set by diffusion of nucleotide from the medium bathing the fibre. This laser photolysis method may be applicable to studies of the dynamic properties of many biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huxley, A. F. Prog. Biophys. 7, 255–318 (1957).

    CAS  Google Scholar 

  2. Huxley, H. E. Science 164, 1356–1367 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Lymn, R. W. & Taylor, E. W. Biochemistry 10, 4617–4624 (1971).

    Article  CAS  Google Scholar 

  4. Eisenberg, E. & Greene, L. E. A. Rev. Physiol. 42, 293–309 (1980).

    Article  CAS  Google Scholar 

  5. Taylor, E. W. Crit. Rev. Biochem. 6, 103–164 (1979).

    Article  Google Scholar 

  6. Mornet, D., Bertrand, R., Pantel, P., Audermard, E. & Kassab, R. Nature 292, 301–306 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Finlayson, B., Lymn, R. W. & Taylor, E. W. Biochemistry 8, 811–819 (1969).

    Article  CAS  Google Scholar 

  8. Sleep, J. A. & Hutton, R. L. Biochemistry 17, 5423–5430 (1978).

    Article  CAS  Google Scholar 

  9. Stein, L. A., Chock, P. B. & Eisenberg, E. Proc. natn. Acad. Sci. U.S.A. 78, 1346–1350 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Kaplan, J. H., Forbush, B. III & Hoffman, J. F. Biochemistry 17, 1929–1935 (1978).

    Article  CAS  Google Scholar 

  11. McCray, J. A., Herbette, L., Kihara, T. & Trentham, D. R. Proc. natn. Acad. Sci. U.S.A. 77, 7237–7241 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Huxley, A. F. & Simmons, R. M. Cold Spring Harb. Symp. quant. Biol. 37, 669–680 (1972).

    Article  Google Scholar 

  13. White, H. D. & Taylor, E. W. Biochemistry 15, 5818–5826 (1976).

    Article  CAS  Google Scholar 

  14. Kawai, M. & Brandt, P. W. J. gen. Physiol. 68, 267–280 (1976).

    Article  CAS  Google Scholar 

  15. Bremel, R. D. & Weber, A. Nature new Biol. 238, 97–101 (1972).

    Article  CAS  Google Scholar 

  16. Bremel, R. D., Murray, J. M. & Weber, A. Cold Spring Harb. Symp. quant. Biol. 37, 267–275 (1972).

    Article  Google Scholar 

  17. Fabiato, A. & Fabiato, F. J. Physiol., Lond. 249, 497–517 (1975).

    Article  CAS  Google Scholar 

  18. Reuben, J. P., Brandt, P. W., Berman, M. & Grundfest, H. J. J. gen. Physiol. 57, 385–407 (1971).

    Article  CAS  Google Scholar 

  19. Arata, T., Mukohata, Y. & Tonomura, Y. J. Biochem. 82, 801–812 (1977).

    Article  CAS  Google Scholar 

  20. Ebashi, S., Endo, M. & Ohtsuki, I. Q. Rev. Biophys. 2, 351–384 (1969).

    Article  CAS  Google Scholar 

  21. Hibberd, M. G., Goldman, Y. E. & Trentham, D. R. Biological Structure and Coupled Flows A. Katzir Katchalsky Symp. (ed. Oplatka, A.) (in the press).

  22. Levy, R. M., Umazume, Y. & Kushmerick, M. J. Biochim. biophys. Acta 430, 352–365 (1976).

    Article  CAS  Google Scholar 

  23. Takashi, R. & Putnam, S. Analyt. Biochem. 92, 375–382 (1979).

    Article  CAS  Google Scholar 

  24. Curtin, N. A., Gilbert, C., Kretzschmar, K. M. & Wilkie, D. R. J. Physiol., Lond 238, 455–472 (1974).

    Article  CAS  Google Scholar 

  25. Hill, A. V. Proc. R. Soc. B126, 136–195 (1938).

    ADS  Google Scholar 

  26. Hill, A. V. Proc. R. Soc. B159, 297–318 (1964).

    ADS  CAS  Google Scholar 

  27. Kushmerick, M. J. & Davies, R. E. Proc. R. Soc. B174, 315–353 (1969).

    ADS  CAS  Google Scholar 

  28. Goldman, Y. E. & Simmons, R. M. J. Physiol., Lond. 269, 55–57P (1977).

    Google Scholar 

  29. Yamamoto, T. & Herzig, J. W. Pflügers Arch. ges. Physiol. 373, 21–24 (1978).

    Article  CAS  Google Scholar 

  30. Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  31. Naylor, G. R. S. & Podolsky, R. J. Proc. natn. Acad. Sci. U.S.A. 78, 5559–5563 (1981).

    Article  ADS  CAS  Google Scholar 

  32. dos Remedios, C. G., Millikan, R. G. C. & Morales, M. F. J. gen. Physiol. 59, 103–120 (1972).

    Article  CAS  Google Scholar 

  33. Cooke, R. Nature 294, 570–571 (1981).

    Article  ADS  CAS  Google Scholar 

  34. Matsubara, I., Yagi, N. & Hashizume, H. Nature 255, 728–729 (1975).

    Article  ADS  CAS  Google Scholar 

  35. McElroy, W. D. & Strehler, B. L. Archs. Biochem. 22, 420–433 (1949).

    CAS  Google Scholar 

  36. Bittar, E. E. & Keh, T. J. Physiol., Lond. 302, 73–80 (1980).

    Article  CAS  Google Scholar 

  37. Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations Ch. 11 (Prentice-Hall, New Jersey, 1971).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldman, Y., Hibberd, M., McCray, J. et al. Relaxation of muscle fibres by photolysis of caged ATP. Nature 300, 701–705 (1982). https://doi.org/10.1038/300701a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/300701a0

  • Springer Nature Limited

This article is cited by

Navigation