Skip to main content
Log in

Post-transcriptional control of tubulin biosynthesis during leishmanial differentiation

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Controls of gene expression can occur at different levels during cell differentiation. Using an in vitro culture system1, we have studied protein biosynthesis during the differentiation of a parasitic protozoan, Leishmania mexicana. There are two developmental stages in the life cycle of this and similar parasites: motile extracellular promastigotes in the sandfly gut and non-motile intracellular amastigotes in the mammalian macrophages. Intracellular parasitism by the latter results in human leishmaniases, diseases still widespread in many parts of the world2. During leishmanial differentiation from one stage to the other, we observed changes in tubulin biosynthesis, concomitant with the morphological changes of these parasites in the length of their flagella and subpellicular microtubules3. With few exceptions4,5 tubulin biosynthesis is known to be under transcriptional control in other eukaryotic systems6–12. Here we have examined the protein synthesis during leishmanial differentiation in in vitro translation systems using total cellular poly(A)+ RNA from amastigotes and promastigotes. Contrary to our expectations, the results indicate a post-transcriptional control for the tubulin biosynthesis during leishmanial differentiation in our host–parasite culture system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, K.-P. Science 209, 1240–1242 (1980).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Zuckerman, A. & Lainson, R. in Parasitic Protozoa Vol. 1 (ed. Kreier, J. P.) 57–133 (Academic, New York, 1977).

    Google Scholar 

  3. Fong, D. & Chang, K.-P. Proc. natn. Acad. Sci, U.S.A. 78, 7624–7628 (1981).

    Article  ADS  CAS  Google Scholar 

  4. Raff, R. A., Colot, H. V., Selvig, S. E. & Gross, P. R. Nature 235, 211–214 (1972).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Raff, R. A., Newrock, K. M. & Secrist, R. D. Devl Biol. 44, 369–374 (1975).

    Article  CAS  Google Scholar 

  6. Merlino, G. T., Chamberlain, J. P. & Kleinsmith, L. J. J. Biol. Chem. 253, 7078–7085 (1978).

    CAS  PubMed  Google Scholar 

  7. Marcaud, L. & Hayes, D. Eur. J. Biochem. 98, 267–273 (1979).

    Article  CAS  PubMed  Google Scholar 

  8. Lai, E. Y., Walsh, C., Wardell, D. & Fulton, C. Cell 17, 867–878 (1979).

    Article  CAS  PubMed  Google Scholar 

  9. Lefebvre, P. A., Silflow, C. D., Wieben, E. D. & Rosenbaum, J. L. Cell 20, 469–477 (1980).

    Article  CAS  PubMed  Google Scholar 

  10. Silflow, C. D. & Rosenbaum, J. L. Cell 24, 81–88 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Minami, S. A., Collis, P. S., Young, E. E. & Weeks, D. P. Cell 24, 89–95 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Raff, E. C. et al. Cell 28, 33–40 (1982).

    Article  CAS  PubMed  Google Scholar 

  13. Nienhuis, A. W., Falvey, A. K. & Anderson, W. F. Meth. Enzym. 30, 621–630 (1974).

    Article  CAS  PubMed  Google Scholar 

  14. Krystosek, A., Cawthon, M. L. & Kabat, D. J. biol. Chem. 250, 6077–6084 (1975).

    CAS  PubMed  Google Scholar 

  15. Roberts, B. E. & Paterson, B. M. Proc. natn. Acad. Sci. U.S.A. 70, 2330–2334 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Pelham, H. R. B. & Jackson, R. J. Eur. J. Biochem. 67, 247–256 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Portier, M. M., Milet, M. & Hayes, D. H. Eur. J. Biochem. 97, 161–168 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Krauhs, E. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4156–4160 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Gilmore-Herbert, M. A. & Heywood, S. M. Biochim. biophys. Acta 454, 55–66 (1976).

    Article  Google Scholar 

  20. Asselbergs, F. A. M., Meulenberg, E., Van Venrooij, W. J. & Bloemendal, H. Eur. J. Biochem. 109, 159–165 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. Piperino, G. & Luck, D. J. L. J. biol. Chem. 252, 383–391 (1977).

    Google Scholar 

  22. Coombs, G. H. Parasitology 84, 149–155 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Rondinelli, E., Soares, M. C. M. & de Castro, J. F. & de Castro, F. T. Archs Biochem. Biophys. 209, 349–355 (1981).

    Article  CAS  Google Scholar 

  24. Wilson, V. C. L. C. & Southgate, B. A. in Biology of the Kinetoplastida Vol.2 (eds Lumsden, W. H. R. & Evans, D. A.) 241–268 (Academic, London, 1979).

    Google Scholar 

  25. Cleveland, D. W., Lopata, M. A., Sherline, P. & Kirschner, M. W. Cell 25, 537–546 (1981).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallach, M., Fong, D. & Chang, KP. Post-transcriptional control of tubulin biosynthesis during leishmanial differentiation. Nature 299, 650–652 (1982). https://doi.org/10.1038/299650a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/299650a0

  • Springer Nature Limited

This article is cited by

Navigation