Skip to main content
Log in

E. coli F1-ATPase interacts with a membrane protein component of a proton channel

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The ATP synthases of bacteria, mitochondria and chloroplasts, which use the energy of a transmembrane proton gradient to power the synthesis of ATP, consist of an integral membrane component F0—thought to contain a proton channel—and a catalytic component, F1. To help investigate the way F0 and F1 are coupled, we have sequenced the b-subunit of the Escherichia coli F0, which seems to be the counterpart of a thermophilic bacteria F0 summit thought to be essential for F1 binding1. We report here that its sequence is remarkable, being hydrophobic around the N-terminus and highly charged in the remainder. We propose that the N-terminal segment lies in the membrane and the rest outside. The extramembranous section contains two adjacent stretches of 31 amino acids where the sequence is very similar: in the second of these stretches there is further internal homology. These duplicated stretches of the polypeptide probably fold into two α-helices which have many common features able to make contact with F1 subuits. Thus protein b occupies a central position in the enzyme, where it may be involved in proton translocation. It is possibly also important in biosynthetic assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Friedl, P., Bienhaus, G., Hoppe, J. & Schairer, H. U. Proc. natn. Acad. Sci. U.S.A. 78, 6643–6646 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Nielsen, J., Hansen, F. G., Hoppe, J., Friedl, P. & Meyenberg, K. Molec. gen. Genet. 184, 33–39 (1981).

    Article  CAS  Google Scholar 

  3. Engleman, D. M., Hendersen, R., McLachlan, A. D. & Wallace, B. A. Proc. natn. Acad. Sci. U.S.A. 77, 2023–2027 (1980).

    Article  ADS  Google Scholar 

  4. Chothia, C., Levitt, M. & Richardson, D. J. molec. Biol. 145, 215–250 (1981).

    Article  CAS  Google Scholar 

  5. Janin, J. & Chothia, C. J. molec. Biol. 143, 95–128 (1980).

    Article  CAS  Google Scholar 

  6. Futai, M., Sternweis, P. C. & Heppel, L. A. Proc. natn. Acad. Sci. U.S.A. 71, 2725–2729 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Smith, J. B. & Sternweis, P. C. Biochemistry 16, 306–311 (1977).

    Article  CAS  Google Scholar 

  8. Yoshida, M., Okamoto, H., Sone, N., Hirata, H. & Kagawa, Y. Proc. natn. Acad. Sci. U.S.A. 74, 936–940 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Sternweis, P. C. J. biol. Chem. 253, 3123–3128 (1978).

    CAS  PubMed  Google Scholar 

  10. Takeda, K. et al. J. Biochem., Tokyo 91, 695–701 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Yoshida, M., Sone, N., Hirata, H., Kagawa, Y. & Ui, N. J. biol. Chem. 254, 9525–9533 (1979).

    CAS  PubMed  Google Scholar 

  12. Bragg, P. D. & Hou, C. Archs Biochem. Biophys. 167, 311–321 (1975).

    Article  CAS  Google Scholar 

  13. Fillingame, R. H. Curr. Topics Bioenerget. 11, 35–106 (1981).

    Article  CAS  Google Scholar 

  14. Sone, N., Yoshida, M., Hirata, H. & Kagawa, Y. Proc. natn. Acad. Sci. U.S.A. 75, 4219–4223 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Cox, G. B. et al. J. Bact. 148, 30–42 (1981).

    CAS  PubMed  Google Scholar 

  16. Gay, N. J. & Walker, J. E. Nucleic Acids Res. 9, 3919–3926 (1981).

    Article  CAS  Google Scholar 

  17. Hoppe, J. et al. Eur. Bioenerget. Conf. Rep. 2, 85–86 (1982).

    Google Scholar 

  18. Futai, M. & Kanazawa, H. Curr. Topics Bioenerget. 10, 181–215 (1980).

    Article  CAS  Google Scholar 

  19. Gay, N. J. & Walker, J. E. Nucleic Acids Res. 9, 2187–2194 (1981).

    Article  CAS  Google Scholar 

  20. Saraste, M., Gay, N. J., Eberle, A., Runswick, M. J. & Walker, J. E. Nucleic Acids Res. 9, 5287–5296 (1981).

    Article  CAS  Google Scholar 

  21. Anderson, S. et al. Nature 290, 457–465 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Hoppe, J., Schairer, H. U. & Sebald, W. Eur. J. Biochem. 112, 17–24 (1980).

    Article  CAS  Google Scholar 

  23. Walker, J. E. et al. Eur. J. Biochem. 123, 253–260 (1982).

    Article  CAS  Google Scholar 

  24. Kanazawa, H., Mabuchi, K., Kayano, T., Tamura, F. & Futai, M. Biochem. biophys. Res. Commun. 100, 219–225 (1981).

    Article  CAS  Google Scholar 

  25. Mabuchi, K., Kanazawa, H., Kayano, T. & Futai, M. Biochem. biophys. Res. Commun. 102, 172–179 (1981).

    Article  CAS  Google Scholar 

  26. Tamura, F., Kanazawa, H., Tsuchiya, T. & Futai, M. FEBS Lett. 127, 48–52 (1981).

    Article  CAS  Google Scholar 

  27. McLachlan, A. D. Int. J. Quantum Chem. 12, Suppl. 1, 371–385 (1977).

    Google Scholar 

  28. McLachlan, A. D. J. molec. Biol. 61, 409–524 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, J., Saraste, M. & Gay, N. E. coli F1-ATPase interacts with a membrane protein component of a proton channel. Nature 298, 867–869 (1982). https://doi.org/10.1038/298867a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298867a0

  • Springer Nature Limited

This article is cited by

Navigation