Skip to main content
Log in

Binding of C3b proceeds by a transesterification reaction at the thiolester site

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The binding of C3b, the opsonic fragment of the third component of complement (C3), to bacterial surface structures mediates two events important in host defence: assembly of the C5b-C9 lytic complex and opsonic recognition by phagocytic cells (for reviews see refs 1, 2). These interactions proceed through a labile binding site3 located on the α′ chain of the C3b molecule, with the resultant formation of a covalent oxy-ester bond4,5 in which the acyl group is contributed by the protein. By exposure of a titratable sulphydryl group6,7 an internal thiolester of native C3 has also been localized to the α′ chain. Studies with 14C-methylamine, a nucleophile which is inherently reactive with a thiolester, have further indicated a stoichiometric (1:1) and covalent interaction, again within the α′ chain8–10. After reaction of the native protein with 14C-methylamine and radioalkylation of the exposed sulphydryl with 3H-iodoacetic acid, a 35-residue tryptic peptide has been isolated that yields the sequence -Cys9-Gly-Glu-Glu12- on Edman degradation; tritium counts are released at step 9 (S[3H]-(carboxymethyl)cysteine) and 14C counts at step 12 (γ-glutamyl[14C]methylamide)8. We now present data which directly demonstrate that the second glutamyl residue of the reactive thiolester can, on proteolytic cleavage of the protein, donate its carbonyl group in a transesterification reaction with appropriate acceptor molecules. These results provide a model for analysis of the interactions at the molecular level between surface constituents of microorganisms and C3b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Müller-Eberhard, H. J. & Schreiber, R. D. Adv. Immun. 29, 1–53 (1980).

    Article  Google Scholar 

  2. Reid, K. B. M. & Porter, R. R. A. Rev. Biochem. 50, 433–464 (1981).

    Article  CAS  Google Scholar 

  3. Müller-Eberhard, H. J., Dalmasso, A. P. & Calcott, M. A. J. exp. Med. 123, 33–54 (1966).

    Article  Google Scholar 

  4. Law, S. K. & Levine, R. P. Proc. natn. Acad. Sci. U.S.A. 74, 2701–2705 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Law, S. K., Lichtenberg, N. A. & Levine, R. P. J. Immun. 123, 1388–1394 (1979).

    CAS  PubMed  Google Scholar 

  6. Janatova, J., Lorenz, P., Schechter, A. M., Prahl, J. W. & Tack, B. F. Biochemistry 19, 4471–4478 (1980).

    Article  CAS  Google Scholar 

  7. Janatova, J., Tack, B. F. & Prahl, J. W. Biochemistry 19, 4479–4485 (1980).

    Article  CAS  Google Scholar 

  8. Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L. & Prahl, J. W. Proc. natn. Acad. Sci. U.S.A. 77, 5764–5768 (1980).

    Article  ADS  CAS  Google Scholar 

  9. Pangburn, M. K. & Müller-Eberhard, H. J. J. exp. Med. 152, 1102–1114 (1980).

    Article  CAS  Google Scholar 

  10. Howard, J. B. J. biol. Chem. 255, 7082–7084 (1980).

    CAS  PubMed  Google Scholar 

  11. Capel, P. J. A., Groeneboer, O., Grosveld, G. & Pondman, K. H. J. Immun. 121, 2566–2572 (1978).

    CAS  PubMed  Google Scholar 

  12. Sim, R. B., Twose, T. M., Paterson, D. S. & Sim, E. Biochem. J. 193, 115–127 (1981).

    Article  CAS  Google Scholar 

  13. Mann, J. et al. J. Immun. 126, 2370–2372 (1981).

    CAS  PubMed  Google Scholar 

  14. Law, S. K., Minich, T. M. & Levine, R. P. Biochemistry 20, 7457–7463 (1981).

    Article  CAS  Google Scholar 

  15. Hammer, C. H., Wirtz, G. H., Renfer, L., Gresham H. D. & Tack, B. F. J. biol. Chem. 256, 3995–4006 (1981).

    CAS  PubMed  Google Scholar 

  16. Tack, B. F., Janatova, J., Thomas, M. L., Harrison, R. A. & Hammer, C. H. Meth. Enzym. 80 (in the press).

  17. Trüeb, B., Holenstein, C. G., Fischer, R. W. & Winterhalter, K. H. J. biol. Chem. 255, 6717–6720 (1980).

    PubMed  Google Scholar 

  18. Gadd, K. J. & Reid, K. B. M. Biochem. J. 195, 471–480 (1981).

    Article  CAS  Google Scholar 

  19. Thomas, M. L., Janatova, J., Gray, W. R. & Tack, B. F. Proc. natn. Acad. Sci. U.S.A. 79, 1054–1058 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Sottrup-Jensen, L., Peterson, T. E. & Magnusson, S. FEBS Lett. 121, 275–279 (1980).

    Article  CAS  Google Scholar 

  21. Campbell, R. D., Gagnon, J. & Porter, R. R. Biosci. Rep. 1, 423–429 (1981).

    Article  CAS  Google Scholar 

  22. Harrison, R. A., Thomas, M. L. & Tack, B. F. Proc. natn. Acad. Sci. U.S.A. 78, 7388–7392 (1981).

    Article  ADS  CAS  Google Scholar 

  23. Hostetter, M. K., Thomas, M. L. & Tack, B. F. IXth int. Complement Workshop, Key Biscayne, Florida Molec. Immun. (in the press).

  24. Tack, B. F. & Prahl, J. W. Biochemistry 15, 4513–4521 (1976).

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  26. Bonner, W. M. & Laskey, R. A. Eur. J. Biochem. 46, 83–88 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hostetter, M., Thomas, M., Rosen, F. et al. Binding of C3b proceeds by a transesterification reaction at the thiolester site. Nature 298, 72–75 (1982). https://doi.org/10.1038/298072b0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/298072b0

  • Springer Nature Limited

This article is cited by

Navigation