Skip to main content

Advertisement

Log in

A model of the Antarctic Ice Sheet

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Numerical modelling of ice sheets and glaciers has become a useful tool in glaciological research. A model described here deals with the vertical mean ice velocity, is time dependent, computes bedrock adjustment and uses an empirical diagnostic relationship to derive the distribution of ice thickness in ice shelves. The rate of snowfall and ice/snow melt depends on the (prescribed) sea-level temperature, surface slope, elevation and distance to open water. The model is able to reproduce the major features of the Antarctic Ice Sheet. When it is run to a steady state for present climatic conditions, the main difference with the present ice sheet is that the shallow parts of the Weddell Sea become covered by grounded ice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mahaffy, M. A. W. J. geophys. Res. 81, 1059–1066 (1976).

    Article  ADS  Google Scholar 

  2. Oerlemans, J. J. Climatol. 2, 1–11 (1982).

    Article  Google Scholar 

  3. Birchfield, G. E., Weertman, J. & Lunde, A. T. Quat. Res. (in the press).

  4. Pollard, D. Nature 296, 334–338 (1982).

    Article  ADS  Google Scholar 

  5. Weertman, J. Nature, 261, 17–20 (1976).

    Article  ADS  Google Scholar 

  6. Jenssen, D. J. Glaciol. 18, 373–390 (1977).

    Article  ADS  Google Scholar 

  7. Budd, W. F., Jenssen, D. & Radok, U. Derived physical Characteristics of the Antarctic Ice Sheet (Publ. No. 18 of Department of Meteorology, University of Melbourne, 1970).

    Google Scholar 

  8. Nye, J. F. J. Glaciol. 3, 493–507 (1959).

    Article  ADS  Google Scholar 

  9. Turcotte, D. L. Adv. Geophys. 51–86 (1979).

  10. Atlas Antarktiki (Glawnoje Oeprawlenie geodezii i Kartografii MG, 1966).

  11. Greischar, L. L. & Bentley, C. R. Nature 283, 651–654 (1980).

    Article  ADS  Google Scholar 

  12. Manabe, S. & Stouffer, R. J. J. geophys. Res. 85, 5529–5554 (1980).

    Article  ADS  Google Scholar 

  13. Oerlemans, J. & Vernekar, A. D. Contr. atmos. Phys. 54, 352–361 (1981).

    Google Scholar 

  14. Ambach, W. Polarforschung 42, 18–24 (1972).

    Google Scholar 

  15. Sugden, D. E. & Clapperton, C. M. Nature 286, 378–381 (1980).

    Article  ADS  Google Scholar 

  16. Budd, W. F. & Smith, I. N. Annals Glaciol. (in the press).

  17. Thomas, R. H. & Bentley, C. R. Quat. Res. 10, 150–170 (1978).

    Article  Google Scholar 

  18. Oerlemans, J. Free Oscillations of Polar Ice Sheets, Preprint (University of Utrecht, 1982).

    Google Scholar 

  19. Budd, W. F. & McInnes, B. J. Hydr. Sci. Bull. 24, 95–104 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oerlemans, J. A model of the Antarctic Ice Sheet. Nature 297, 550–553 (1982). https://doi.org/10.1038/297550a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/297550a0

  • Springer Nature Limited

This article is cited by

Navigation