Skip to main content
Log in

Transposition of a tandem duplication of yeast mating-type genes

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The switching of mating-type genes in both homothallic and heterothallic strains of the yeast Saccharomyces cerevisiae involves a site-specific transposition event1–3. A sequence at the mating-type locus (MAT) is replaced by a copy of a or α information from the unexpressed, loci, HML or HMR. Although MATa and MATα contain unique sequences of ∼700 base pairs (bp), they are flanked by sequences that are also found at HML and HMR4,5 (Fig. 1a). Recent results6–8 have suggested that the switching of MAT alleles involves an intrachromosomal mitotic gene conversion event, in which a donor sequence at HML or HMR pairs with the homologous sequences at the MAT locus. On this view the switching of mating-type information must be able to accommodate the region of non-homology in a heteroduplex structure. (Analogous gene conversions of non-homologous regions have been well documented during meiosis at MAT and for deletions in other yeast genes9,10.) One prediction of a gene conversion mechanism is that it should be possible to transpose a tandem duplication of mating-type genes from HMR to MAT. In such a switch, pairing would occur between MAT and homologous sequences flanking the two copies of the tandem duplication at HMR. Our results reported here demonstrate that a tandem duplication created at HMR by recombinant DNA techniques can be transposed to MAT without the loss of these sequences at the donor locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oshima, Y. & Takano, I. Genetics 67, 327–335 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hicks, J. B., Strathern, J. N. & Herskowitz, I. DNA Insertion Elements, Plasmids and Episomes (eds Bukhari, A., Shapiro, J. & Adhya, S.) 457–462 (Cold Spring Harbor Laboratory, New York, 1977).

    Google Scholar 

  3. Hicks, J., Strathern, J. & Klar, A. J. S. Nature 282, 478–483 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Nasmyth, K. & Tatchell, K. Cell 19, 753–764 (1980).

    Article  CAS  PubMed  Google Scholar 

  5. Strathern, J. N., Spatola, E., McGill, C. & Hicks, J. B. Proc. natn. Acad. Sci. U.S.A. 77, 2839–2843 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Haber, J. E., Rogers, D. T. & McCusker, J. H. Cell 22, 277–289 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Klar, A. J. S., Mclndoo, J., Strathern, J. N. & Hicks, J. B. Cell 22, 291–298 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Haber, J. E., Rowe, L. & Rogers, D. Molec. cell. Biol. 1, 1106–1119 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klar, A. J. S., Fogel, S. & Lusnak, K. Genetics 92, 777–782 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fink, G. R. & Styles, C. A. Genetics 77, 231–244 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haber, J., Rogers, D. Transposition of a tandem duplication of yeast mating-type genes. Nature 296, 768–770 (1982). https://doi.org/10.1038/296768a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296768a0

  • Springer Nature Limited

This article is cited by

Navigation