Skip to main content
Log in

The formation of galactic haloes in the neutrino-adiabatic theory

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Recent evidence of a finite rest mass for the neutrino has led to a revival of the idea that these particles may provide the unseen but dynamically indicated matter on cosmological scales of galactic halo and larger size. In the early Universe, the free streaming of collisionless neutrinos is seen to damp out perturbations less than of the order of tens of Mpc long1–5. A numerical simulation of the clustering of collisionless particles in a universe with this type of perturbation spectrum6 has led to the formulation of a cell structure with large voids. Many observations7,8 support the existence of such a structure on scales of tens of Mpc. However, collapse of perturbations of this size leads to velocities of the order of 1,000 km s−1, and as the neutrinos presumably cannot cool, this seems to be too large for their inclusion in galactic haloes, which have much smaller velocity dispersions. Thus it has been suggested that neutrinos cannot cluster in galactic haloes without some means to ‘save’ smaller-scale perturbations3,4,9. Furthermore, if neutrinos of mass ∼30 eV form galactic haloes, the phase space density must be very close to the primordial one10—and phase mixing is often associated with collapse. Although the average value of the velocity dispersion may be reduced if the perturbations are anisotropic11, a disparity still remains. I now present a numerical simulation which shows that if the initial perturbations are sufficiently anisotropic, the collapse of very large perturbations of collisionless particles leads to a condensation of particles with low velocity dispersion and high phase-space density, which may easily fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bisnovatyi-Kogan, G. S. & Novikov, I. D. Soviet Astr. 24, 516–517 (1980).

    ADS  Google Scholar 

  2. Doroshkievich, A. G., Zel'dovich, Ya. B., Syunyaev, R. A. & Klopov, M. Yu. Soviet astr. Lett. 6, 252–259 (1980).

    ADS  Google Scholar 

  3. Bond, J. R., Efstathiou, G. & Silk, J. Phys. Rev. Lett. 45, 1980–1984 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Klinkhaamer, F. R. & Norman, C. Astrophys. J. Lett. 243, L1–L4 (1981).

    Article  ADS  Google Scholar 

  5. Wasserman, I. Astrophys. J. 248, 1–12 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Doroshkievich, A. G. et al. Mon. Not. R. astr. Soc. 192, 321–337 (1980).

    Article  ADS  Google Scholar 

  7. Einasto, J., Joêveer, M. & Saar, E. Mon. Not. R. astr. Soc. 193, 353–375 (1980).

    Article  ADS  Google Scholar 

  8. Kirshner, R.P., Oemler, A. Jr, Schechter, P. L. & Schechtman, S. A. Astrophys. J. Lett. 248, L57–L60 (1981).

    Article  ADS  Google Scholar 

  9. Davis, M., Lecar, M., Pryor, C. & Witten, E. Astrophys. J. 250, 423–431 (1981).

    Article  ADS  CAS  Google Scholar 

  10. Tremaine, S. & Gunn, J. L. Phys. Rev. Lett. 42, 407–410 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Barrow, J. & Silk, J. Astrophys J. 250, 432–439 (1981).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Hockney, R. W. & Eastwood, H. W. Computer Simulation Using Particles (McGraw Hill, New York, 1981).

    MATH  Google Scholar 

  13. Zel'dovich, Ya. B., Klypin, A. A., Khlopov, M. Yu., & Checketkin, V. M. Sov. J. nucl. Phys. 31, 664–669 (1980).

    Google Scholar 

  14. Melott, A. Phys. Rev. Lett. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melott, A. The formation of galactic haloes in the neutrino-adiabatic theory. Nature 296, 721–723 (1982). https://doi.org/10.1038/296721a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296721a0

  • Springer Nature Limited

This article is cited by

Navigation