Skip to main content
Log in

Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell-mediated killing

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Two distinct murine cell-surface differentiation antigens, Mac-1 and LFA-1 (lymphocyte function-associated antigen 1), are compared here and shown to be related at the molecular level. Mac-1, defined by the M1/70 rat anti-mouse monoclonal antibody (MAb), is expressed on macrophages, natural killer cells and 50% of bone marrow cells, but not on B or T lymphocytes1–3. In contrast, the LFA-1 antigen, defined by the M7/14 rat anti-mouse MAb, is expressed on B and T lymphocytes and 75% of bone marrow cells, but not on thioglycollate-induced peritoneal exudate macrophages4,5. MAb blocking studies suggest that LFA-1 participates in T-lymphocyte-mediated killing and T-lymphocyte antigen-specific responses4,5. Mac-1 and LFA-1 have α-polypeptide chains of 170,000 and 180,000 molecular weight (Mr), respectively, and both contain β polypeptides of 95,000 Mr. This similarity prompted us to investigate their relationship. Mac-1 and LFA-1 have distinct cellular distributions, MAb-defined antigenic determinants and α-subunits, but have highly homologous or identical β-subunits as shown by tryptic peptide mapping. Moreover, they share some common antigenic determinants recognized by a polyclonal antiserum. Cross-linking studies show that in each antigen the subunits are noncovalently associated in α1β1 structures. Mac-1 and LFA-1 comprise a novel family of two-chain leukocyte differentiation antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Springer, T., Galfre, G., Secher, D. S. & Milstein, C. Eur. J. Immun. 9, 301–306 (1979).

    Article  CAS  Google Scholar 

  2. Springer, T. A. & Ho, M-K. in Hybridomas in Cancer Diagnosis and Treatment (eds Mitchell, M. S. & Oettgen, H. F.) 35–46 (Raven, New York, 1982).

    Google Scholar 

  3. Holmberg, L. A., Springer, T. A. & Ault, K. A. J. Immun. 127, 1792–1799 (1981).

    CAS  PubMed  Google Scholar 

  4. Davignon, D., Martz, E., Reynolds, T., Kürzinger, K. & Springer, T.A. Proc. natn. Acad. Sci. U.S.A. 78, 4535–4539 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Davignon, D., Martz, E., Reynolds, T., Kürzinger, K. & Springer, T. A. J. Immun. 127, 590–595 (1981).

    CAS  PubMed  Google Scholar 

  6. Kürzinger, K. et al. J. Immun. 127, 596–602 (1981).

    PubMed  Google Scholar 

  7. Springer, T. A. J. biol. Chem. 256, 3833–3839 (1981).

    CAS  PubMed  Google Scholar 

  8. Strominger, J. L. et al. in The Role of the Major Histocompatibility Complex in Immuno-biology (ed. Dorf, M. E.) 115–172 (Garland STPM, New York, 1981).

    Google Scholar 

  9. Davis, M. M., Kim, S. K. & Hood, L. Cell 22, 1–2 (1980).

    Article  CAS  Google Scholar 

  10. Greenwood, F. C., Hunter, W. M. & Glover, J. S. Biochem. J. 89, 114–122 (1963).

    Article  CAS  Google Scholar 

  11. Elder, J. H., Pickett, R. A. II, Hampton, J. & Lerner, R. A. J. biol. Chem. 252, 6510–6515 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kürzinger, K., Ho, MK. & Springer, T. Structural homology of a macrophage differentiation antigen and an antigen involved in T-cell-mediated killing. Nature 296, 668–670 (1982). https://doi.org/10.1038/296668a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296668a0

  • Springer Nature Limited

This article is cited by

Navigation