Skip to main content
Log in

Acetylcholinesterase forms in fast and slow rabbit muscle

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In the skeletal muscles of vertebrates, the level of acetyl-cholinesterase (AChE, EC 3.1.1.7.) may be either decreased (in rat) or increased (in chicken1 and rabbit2,3) after denervation. This enzyme is very polymorphic, however, presenting molecular forms which differ in their cellular localization and physiological regulation. The different AChE molecules may be classified as globular forms (monomers G1, dimers G2 and tetramers G4) and asymmetric or collagen-tailed forms (containing one, two or three tetramers: A4, A8 and A12)4. The distribution of the collagen-tailed and globular forms along the muscle fibres varies according to the animal species and physiological state: in normal adult rat muscle, the A12 form, which represents the major collagen-tailed form, is localized exclusively in the endplate region4–6, whereas in rat embryo7 and human muscle8 this form is distributed over the entire muscle fibre. The presence of collagen-tailed AChE has, however, been considered as an indicator of neuromuscular interactions because its appearance during embryogenesis coincides with the establishment of neuromuscular contacts6,9 and because, after denervation, the A12 form disappears from rat5,6 and chicken10,11 muscles. Here we report that this form in fact increases markedly in a slow twitch oxidative muscle of the rabbit after denervation. The regulation of asymmetric—and particularly A12—forms of AChE thus depends dramatically on the species and on the nature of skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, B. W., Kaplan, M. A., Merhoff, W. C. & Mori, S. S. J. exp. Zool. 174, 39–54 (1970).

    Article  CAS  Google Scholar 

  2. Guth, L. Physiol. Rev. 48, 655–687 (1968).

    Article  Google Scholar 

  3. Tennyson, V. M., Kremzner, L. T. & Brzin, M. J. Neuropath. exp. Neurol. 36, 245–275 (1977).

    Article  CAS  Google Scholar 

  4. Bon, S., Vigny, M. & Massoulié, J. Proc. natn. Acad. Sci. U.S.A. 76, 2546–2550 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Hall, Z. J. Neurol. 4, 343–361 (1973).

    CAS  Google Scholar 

  6. Vigny, M., Koenig, J. & Rieger, F. J. Neurochem. 27, 1347–1353 (1976).

    Article  CAS  Google Scholar 

  7. Sketelj, J. & Brzin, M. Neurochem. Res. 5, 655–660 (1980).

    Article  Google Scholar 

  8. Carson, S., Bon, S., Vigny, M., Massoulié, J. & Fardeau, M. FEBS Lett. 97, 348–352 (1979).

    Article  CAS  Google Scholar 

  9. Kato, A. C., Vrachliotis, A., Fulpius, B. & Dunant, Y. Devl Biol. 76, 222–228 (1980).

    Article  CAS  Google Scholar 

  10. Vigny, M., Di Giamberardino, L., Couraud, J. Y., Rieger, F. & Koenig, J. FEBS Lett. 69, 277–280 (1976).

    Article  CAS  Google Scholar 

  11. Sketelj, J., McNamee, M. G. & Wilson, B. W. Expl Neurol. 60, 624–629 (1978).

    Article  CAS  Google Scholar 

  12. Chauveau, A., Arloing, S. & Lesbre, F. X. in Traité d'Anatomie Comparée des Animaux Domestiques Vol. 1, 5th edn, 489 (Baillière, Paris, 1903).

    Google Scholar 

  13. Cantier, J. & Vezinhet, A. Ann. Biol. anim. Biochem. Biophys. 8, 107–139 (1968).

    Article  Google Scholar 

  14. Bacou, F. & Nouguès, J. Expl Cell Res. 129, 455–460 (1980).

    Article  CAS  Google Scholar 

  15. Jedrzejczyk, J., Silman, I., Lyles, J. M. & Barnard, E. A. Biosci. Rep. 1, 45–51 (1981).

    Article  CAS  Google Scholar 

  16. Di Giamberardino, L. & Couraud, J. Y. Nature 271, 170–172 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Koenig, J. & Vigny, M. Nature 271, 75–77 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Rubin, L. L., Schuetze, S. M., Weill, C. C. & Fischbach, G. D. Nature 283, 264–267 (1980).

    Article  ADS  CAS  Google Scholar 

  19. Sugiyama, H. FEBS Lett. 84, 257–260 (1977).

    Article  CAS  Google Scholar 

  20. Bon, S., Cartaud, J. & Massoulié, J. Eur. J. Biochem. 85, 1–14 (1978).

    Article  CAS  Google Scholar 

  21. McMahan, U. J., Sanes, J. R. & Marshall, L. M. Nature 271, 172–174 (1978).

    Article  ADS  CAS  Google Scholar 

  22. Lyles, J. M. & Barnard, E. A. FEBS Lett. 109, 9–12 (1980).

    Article  CAS  Google Scholar 

  23. Rieger, F., Koenig, J. & Vigny, M. Devl Biol. 76, 358–365 (1980).

    Article  CAS  Google Scholar 

  24. Ellman, C. L., Courtney, K. D., Andres, V. & Featherstone, R. M. Biochem. Pharmac. 7, 88–95 (1961).

    Article  CAS  Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 266–275 (1951).

    Google Scholar 

  26. Padykula, H. A. & Herman, F. J. Histochem. Cytochem. 3, 170–195 (1955).

    Article  CAS  Google Scholar 

  27. Guth, L. & Samaha, F. J. Expl Neurol. 25, 138–152 (1969).

    Article  CAS  Google Scholar 

  28. Koenig, J. & Rieger, F. Devl Neurosci. 4, 249–257 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bacou, F., Vigneron, P. & Massoulié, J. Acetylcholinesterase forms in fast and slow rabbit muscle. Nature 296, 661–664 (1982). https://doi.org/10.1038/296661a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296661a0

  • Springer Nature Limited

This article is cited by

Navigation