Skip to main content
Log in

A simple ice sheet model yields realistic 100 kyr glacial cycles

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Records of global ice volume for the past 700 kyr, based on oxygen isotopic data from deep-sea cores and reflecting mainly the changing Northern Hemispheric ice sheets, show a dominant cycle of roughly 100 kyr period. The records also show smaller-amplitude oscillations with spectral peaks at roughly 40 and 20 kyr periods, which are well correlated with the Milankovich insolation variations due to perturbations in the Earth's orbital parameters. However, no model has accurately simulated the 100 kyr glacial cycle. Recently Birchfield et al.1 and Oerlemans2 have obtained encouraging agreement with some features of the glacial cycle by using a simple ice sheet model with a realistic time lag in the response of the bedrock to the ice load. This study extends their basic model, first by including topography to represent high ground in the north. Improved results can then be obtained but only with unrealistic parameter values and for some aspects of the record. Further improvements areobtained by crudely parameterizing possible calving at the equatorward ice sheet tip during deglaciation by proglacial lakes and/or marine incursions from the Atlantic, as emphasized by Andrews3. The resulting ice volume curves agree fairly well with the observed records and their power spectra over the past 700 kyr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birchfield, G. E., Weertman, J. & Lunde, A. T. Quat. Res. 15, 126–142 (1981).

    Article  Google Scholar 

  2. Oerlemans, J. Nature 287, 430–432 (1980).

    Article  ADS  Google Scholar 

  3. Andrews, J. T. Arct. Alp. Res. 5, 185–199 (1973).

    Article  Google Scholar 

  4. Hughes, T., Denton, G. H. & Grosswald, M. G. Nature 266, 596–602 (1977).

    Article  ADS  Google Scholar 

  5. Berger, A. L. J. atmos. Sci. 35, 2362–2367 (1978).

    Article  ADS  Google Scholar 

  6. Walcott, R. I. A. Rev. Earth planet. Sci. 1, 15–37 (1973).

    Article  ADS  Google Scholar 

  7. Cathles, L. M. The Viscosity of the Earth's Mantle, 386 (Princeton, New Jersey, 1975).

    Google Scholar 

  8. Peltier, W. R. A. Rev. Earth planet. Sci. 9, 199–225 (1981).

    Article  ADS  Google Scholar 

  9. Ghil, M. & Le Treut, H. J. geophys. Res. 86, 5262–5270 (1981).

    Article  ADS  Google Scholar 

  10. Budd, W. F. I.A.H.S. Publ. No. 131, 441–471 (1981).

  11. Weertman, J. Nature 261, 17–20 (1976).

    Article  ADS  Google Scholar 

  12. Pollard, D., Ingersoll, A. P. & Lockwood, J. G. Tellus 32, 301–319 (1980).

    ADS  Google Scholar 

  13. Chappell, J. & Veeh, H. H. Bull. geol. Soc. Am. 89, 356–368 (1978).

    Article  CAS  Google Scholar 

  14. Andrews, J. T. & Mahaffy, M. A. W. Quat. Res. 6, 167–183 (1976).

    Article  Google Scholar 

  15. Budd, W. F. and Smith, I. N. I.A.H.S. Publ. No. 131, 369–409 (1981).

  16. Birchfield, G. E., Weertman, J. & Lunde, A. T. J. atmos. Sci. (in the press).

  17. Walcott, R. I. Rev. Geophys. Space Phys. 10, 849–884 (1972).

    Article  ADS  Google Scholar 

  18. Ruddiman, W. F. & McIntyre, A. Quat. Res. 16, 125–134 (1981).

    Article  Google Scholar 

  19. Meier, M. F. et al. U.S. geol. Surv. Open-File Rep. 80–582, 47 (1980).

  20. Emiliani, C. Earth planet. Sci. Lett. 37, 349–352 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Williams, L. D. Arct. Alp. Res. 11, 443–456 (1979).

    Article  Google Scholar 

  22. Adam, D. P. Quat. Res. 5, 161–171 (1975).

    Article  Google Scholar 

  23. Ruddiman, W. F., Molfino, B., Esmay, A. & Pokras, E. Climatic Change 3, 65–87 (1980).

    Article  ADS  Google Scholar 

  24. Paterson, W. S. B., Geophys. Space Phys. 10, 885–917 (1972).

    Article  ADS  Google Scholar 

  25. Hughes, T. Rev. Geophys. Space Phys. 15, 1–46 (1977).

    Article  ADS  Google Scholar 

  26. Oerlemans, J. Quat. Res. 15, 77–85 (1981).

    Article  Google Scholar 

  27. Turcotte, D. L. Adv. Geophys. 21, 51–86 (1979).

    Article  ADS  Google Scholar 

  28. Burgers, J. M. & Collette, B. J. Proc. K. ned. Akad. Wet. B 61, 221–241 (1958).

    Google Scholar 

  29. Hays, J. D., Imbrie, J. & Shackleton, N. J. Science 194, 1121–1132 (1976).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollard, D. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature 296, 334–338 (1982). https://doi.org/10.1038/296334a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/296334a0

  • Springer Nature Limited

This article is cited by

Navigation