Skip to main content
Log in

Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The rapid evolution1 and maternal mode of inheritance2 of mitochondrial DNA (mtDNA) make it a valuable marker for individuals related by descent from the same female3. We report here a study of wild and inbred mice which illustrates this point. We have examined mouse mtDNA from various locales in the Northern Hemisphere using restriction enzymes that cut the molecule at an average of 150 sites and find a high level of restriction-site polymorphism in wild mice but no variation among the ‘old’ inbred strains. This result is surprising because the nuclear genomes of these strains are known to differ greatly from one another4. The old inbred type of mtDNA occurs rarely in wild mice and differs from other types in the wild by an average of 100 nucleotide substitutions. In possible contradiction of published breeding records, these findings indicate that only one female lineage contributed to the formation of all the old inbred lines. In addition, our study of new inbred strains provides genetic markers that will be useful in mouse developmental and cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown, W. M., George, M. & Wilson, A. C. Proc. natn. Acad. Sci. U.S.A. 76, 1967–1971 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Giles, R. E., Blanc, H., Cann, H. M. & Wallace, D. C. Proc. natn. Acad. Sci. U.S.A. 77, 6715–6719 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Brown, W. M. & Wright, J. W. Science 203, 1247–1249 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Staats, J. Cancer Res. 40, 2083–2128 (1980).

    CAS  PubMed  Google Scholar 

  5. Marshall, J. T. & Sage, R. D. in Biology of the House Mouse (ed. Berry, R. J.) 15–25 (Academic, London, 1981).

    Google Scholar 

  6. Sage, R. D. in The Mouse in Biomedical Research Vol. 1 (eds Foster, H. L., Small, J. D. & Fox, J. G.) 39–90 (Academic, New York, 1981).

    Google Scholar 

  7. Ferris, S. D., Sage, R. D. & Wilson, A. C. Genetics (in the press).

  8. Forejt, J. & Iványi, P. Genet. Res. 24, 189–206 (1974).

    Article  CAS  Google Scholar 

  9. Nei, M. & Li, W.-H. Proc. natn. Acad. Sci. U.S.A. 76, 5269–5273 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W. & Clayton, D. A. Cell 26, 167–180 (1981).

    Article  CAS  Google Scholar 

  11. Upholt, W. B. & Dawid, I. B. Cell 11, 571–583 (1977).

    Article  CAS  Google Scholar 

  12. Avise, J. C., Lansman, R. A. & Shade, R. O. Genetics 92, 279–295 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Avise, J. C., Giblin-Davidson, C., Laerm, J., Patton, J. C. & Lansman, R. A. Proc. natn. Acad. Sci. U.S.A. 76, 6694–6698 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Brown, G. G. & Simpson, M. V. Genetics 97, 125–143 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ferris, S. D., Brown, W. M., Davidson, W. S. & Wilson, A. C. Proc. natn. Acad. Sci U.S.A. 78, 6319–6323 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Yonekawa, H. et al. Genetics (in the press).

  17. Yonekawa, H. et al. Jap. J. Genet. 55, 289–296 (1980).

    Article  Google Scholar 

  18. King, B., Shade, R. O. & Lansman, R. A. Plasmid 5, 313–328 (1981).

    Article  CAS  Google Scholar 

  19. Sage, R. D. in Origins of Inbred Mice (ed. Morse, H. C. III) 519–553 (Academic, New York, 1978).

    Book  Google Scholar 

  20. Berry, R. J., Sage, R. D., Lidicker, W. Z. & Jackson, W. B. J. Zool. 193, 391–404 (1981).

    Article  CAS  Google Scholar 

  21. Nadeau, J. H., Wakeland, E. K., Götze, D. & Klein, J. Genet. Res. 37, 17–31 (1981).

    Article  CAS  Google Scholar 

  22. Morse, H. C. III in Origins of Inbred Mice (ed. Morse, H. C. III) 3–21 (Academic, New York, 1978).

  23. Keeler, C. E. The Laboratory Mouse. Its Origin, Heredity, and Culture (Harvard University Press, Cambridge, 1931).

    Google Scholar 

  24. Lynch, C. J. Lab. Anim. Care 19, 214–220 (1969).

    CAS  Google Scholar 

  25. Festing, M. F. W. Inbred Strains in Biomedical Research (Oxford University Press, New York, 1979).

    Book  Google Scholar 

  26. Hunt, W. G. & Seiander, R. K. Heredity 31, 11–33 (1973).

    Article  CAS  Google Scholar 

  27. Brown, W. M. Proc. natn. Acad. Sci. U.S.A. 77, 3605–3609 (1980).

    Article  ADS  CAS  Google Scholar 

  28. Thaler, L., Bonhomme, F. & Britton-Davidian, J. in Biology of the House Mouse (ed. Berry, R. J.) 27–41 (Academic, London, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferris, S., Sage, R. & Wilson, A. Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295, 163–165 (1982). https://doi.org/10.1038/295163a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/295163a0

  • Springer Nature Limited

This article is cited by

Navigation