Skip to main content
Log in

Streptozotocin and alloxan induce DNA strand breaks and poly(ADP–ribose) synthetase in pancreatic islets

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Streptozotocin, which produces diabetes mellitus in experimental animals1–3, has been reported to reduce the level of NAD in pancreatic islets4,5 and to inhibit islet synthesis of proinsulin6. The decrease in NAD is due to increased NAD degradation mediated by islet nuclear poly(ADP–ribose) synthetase7,8. Evidence suggests that poly(ADP–ribose) synthetase is activated when DNA is fragmented9–17. Here we describe that both Streptozotocin and alloxan, which also produces experimental diabetes mellitus1,2, cause DNA strand breaks which stimulate nuclear poly(ADP–ribose) synthetase, thereby depleting intracellular NAD and inhibiting proinsulin synthesis in isolated pancreatic islets of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rerup, C. C. Pharmac. Rev. 22, 485–518 (1970).

    CAS  Google Scholar 

  2. Dulin, W. E. & Soret, M. G. in The Diabetic Pancreas (eds Volk, B. W. & Wellmann, K. F.) 425–465 (Plenum, New York, 1977).

    Book  Google Scholar 

  3. Agarwal, M. K. FEES Lett. 120, 1–3 (1980).

    Article  CAS  Google Scholar 

  4. Ho, C.-K. & Hashim, S. A. Diabetes 21, 789–793 (1972).

    Article  CAS  Google Scholar 

  5. Hinz, M., Katsilambros, N., Maier, V., Schatz, H. & Pfeiffer, E. F. FEBS Lett. 30, 225–228 (1973).

    Article  CAS  Google Scholar 

  6. Maldonato, A., Trueheart, P. A., Renold, A. E. & Sharp, G. W. G. Diabetologia 12, 471–481 (1976).

    Article  CAS  Google Scholar 

  7. Yamamoto, H. & Okamoto, H. Biochem. biophys. Res. Commun. 95, 474–481 (1980).

    Article  CAS  Google Scholar 

  8. Okamoto, H. Molec. cell. Biochem. 37, 43–61 (1981).

    Article  CAS  Google Scholar 

  9. Miller, E. G. Biochim. biophys. Acta 395, 191–200 (1975).

    Article  CAS  Google Scholar 

  10. Berger, N. A., Weber, G. & Kaichi, A. S. Biochim. biophys. Acta 519, 87–104 (1978).

    Article  CAS  Google Scholar 

  11. Smulson, M. E., Schein, P., Mullins, D. W. Jr & Sudhakar, S. Cancer Res. 37, 3006–3012 (1977).

    CAS  Google Scholar 

  12. Jacobson, M. K., Levi, V., Juarez-Salinas, H., Barton, R. A. & Jacobson, E. L. Cancer Res. 40, 1797–1802 (1980).

    CAS  PubMed  Google Scholar 

  13. Berger, N. A., Sikorski, G. W., Petzold, S. J. & Kurohara, K. K. Biochemistry 19, 289–293 (1980).

    Article  CAS  Google Scholar 

  14. Skidmore, C. J. et al. Eur. J. Biochem. 101, 135–142 (1979).

    Article  CAS  Google Scholar 

  15. Durkacz, B. W., Omidiji, O., Gray, D. A. & Shall, S. Nature 283, 593–596 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Ohgushi, H., Yoshihara, K. & Kamiya, T. J. biol. Chem. 255, 6205–6211 (1980).

    CAS  PubMed  Google Scholar 

  17. Benjamin, R. C. & Gill, D. M. J. biol. Chem. 255, 10502–10508 (1980).

    CAS  PubMed  Google Scholar 

  18. Whish, W. J. D., Davies, M. I. & Shall, S. Biochem. biophys. Res. Commun. 65, 722–730 (1975).

    Article  CAS  Google Scholar 

  19. Smulson, M., Stark, P., Gazzoli, M. & Roberts, J. J. Expl Cell Res. 90, 175–182 (1975).

    Article  CAS  Google Scholar 

  20. Halldorsson, H., Gray, D. A. & Shall, S. FEBS Lett. 85, 349–352 (1978).

    Article  CAS  Google Scholar 

  21. Noto, Y. & Okamoto, H. Acta diabetol. lat. 15, 273–282 (1978).

    Article  CAS  Google Scholar 

  22. Itoh, N. & Okamoto, H. Nature 283, 100–102 (1980).

    Article  ADS  CAS  Google Scholar 

  23. Lacy, P. E., McDaniel, M. L., Fink, C. J. & Roth, C. Diabetologia 11, 501–507 (1975).

    Article  CAS  Google Scholar 

  24. Claycomb, W. C. Biochem. J. 154, 387–393 (1976).

    Article  CAS  Google Scholar 

  25. Levi, V., Jacobson, E. L. & Jacobson, M. K. FEBS Lett. 88, 144–146 (1978).

    Article  CAS  Google Scholar 

  26. Lazarow, A. Proc. Soc. exp. Biol. Med. 61, 441–447 (1946).

    Article  CAS  Google Scholar 

  27. Heikkila, R. E., Winston, B., Cohen, G. & Barden, H. Biochem. Pharmac. 25, 1085–1092 (1976).

    Article  CAS  Google Scholar 

  28. Grankvist, K., Marklund, S., Sehlin, J. & Täljedal, I.-B. Biochem. J. 182, 17–25 (1979).

    Article  CAS  Google Scholar 

  29. Fischer, L. J. & Hamburger, S. A. Diabetes 29, 213–216 (1980).

    Article  CAS  Google Scholar 

  30. Parkhurst, J. R., Peterson, A. R. & Heidelberger, C. Proc. natn. Acad. Sci. U.S.A. 70, 3200–3204 (1973).

    Article  ADS  CAS  Google Scholar 

  31. Berger, N. A., Weber, G., Kaichi, A. S. & Petzold, S. J. Biochim. biophys. Acta 519, 105–117 (1978).

    Article  CAS  Google Scholar 

  32. Okamoto, H., Noto, Y., Miyamoto, S., Mabuchi, H. & Takeda, R. FEBS Lett. 54, 103–105 (1975).

    Article  CAS  Google Scholar 

  33. Kissane, J. M. & Robins, E. J. biol. Chem. 233, 184–188 (1958).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, H., Uchigata, Y. & Okamoto, H. Streptozotocin and alloxan induce DNA strand breaks and poly(ADP–ribose) synthetase in pancreatic islets. Nature 294, 284–286 (1981). https://doi.org/10.1038/294284a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294284a0

  • Springer Nature Limited

This article is cited by

Navigation