Skip to main content
Log in

Breakdown of cytoskeletal filaments selectively reduces Na and Ca spikes in cultured mammal neurones

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Cytoskeletal filaments, which contain microtubules1–4 (∼25 nm thick), microfilaments5,6 (5 nm) and intermediate filaments7–9 (neurofilaments, 10 nm), are considered essential for maintaining complex cellular shape and various cellular functions. Several studies have claimed that these filaments also maintain in some part physiological properties of excitable membranes10–14. However, the role of these filaments in maintenance of ionic channel activity is poorly understood10,11. Here we report experiments in which we disrupted specific cytoskeletal filaments by applying chemicals to tissue-cultured nerve cells of adult guinea pigs15–17, and examined changes in membrane properties by conventional electrophysiological techniques. Selective breakdown of microfilaments by cytochalasin B5,6,18–21 or its derivatives22–24 caused selective reduction in the membrane capacity to carry Na ions16 (as measured by Vmax of pure Na spikes). The ability of the membrane to carry Ca ions15 and other physiological properties (resting membrane potential, input resistance and capacitance) were not affected significantly. By contrast, a breakdown of microtubules by colchicine1–4 or vinca alkaloids4,25 caused selective reduction of Vmax for Ca spikes but not of that for Na spikes. These findings suggest that Na channels in the plasma membrane may have a molecular interaction with microfilaments, but are independent of microtubules. Conversely, Ca channels may be related to microtubules or to neurites, but seem to be independent of microfilaments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Margulis, L. Int. Rev. Cytol. 34, 333–361 (1973).

    Article  CAS  Google Scholar 

  2. Olsmted, J. B. & Borisy, G. G. A. Rev. Biochem. 42, 507–540 (1975).

    Google Scholar 

  3. Dustin, P. Microtubules (Springer, New York, (1978).

  4. Lasek, R. J. & Hoffman, P. N. Cell Motility Book C, 1021–1049 (Cold Spring Harbor Laboratory, New York, (1976).

  5. Wessells, N. K. et al. Science 171, 135–143 (1971).

    Article  ADS  CAS  Google Scholar 

  6. Korn, E. D. Proc. natn. Acad. Sci. U.S.A. 75, 588–599 (1978).

    Article  ADS  CAS  Google Scholar 

  7. Jorgensen, A. O., Surbahmanyan, L., Turnbull, C. & Kalmins, V. I. Proc. natn. Acad. Sci. U.S.A. 73, 3192–3196 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Isenberg, G. & Small, J. V. Cytobiologie 16, 326–344 (1978).

    Google Scholar 

  9. Zackroff, B. V. & Goldman, R. D. Science 208, 1152–1155 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Liberman, M., Manasek, F. J., Sawanobori, T. & Johnson, E. A. Devl. Biol. 31, 380–403 (1973).

    Article  Google Scholar 

  11. Fukuda, J., Henkart, M. P., Fischbach, G. D. & Smith, T. G. Jr, Devl Biol. 49, 395–411 (1976).

    Article  CAS  Google Scholar 

  12. Thoa, N. B., Wooten, G. F., Axelrod, J. & Kopin, A. I. Proc. natn. Acad. Sci. U.S.A. 69, 520–522 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Nakazato, Y. & Douglas, W. W. Proc. natn. Acad. Sci. U.S.A. 70, 1730–1733 (1973).

    Article  ADS  CAS  Google Scholar 

  14. Rubin, L. L., Gorio, A. & Mauro, A. Brain Res. 104, 171–175 (1976).

    Article  CAS  Google Scholar 

  15. Fukuda, J. & Kameyama, M. Nature 279, 546–548 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Fukuda, J. & Kameyama, M. Brain Res. 202, 249–255 (1980).

    Article  CAS  Google Scholar 

  17. Fukuda, J. in Dynamic Aspect of Bioelectrolytes and Biomembrane (Kohdansha, Tokyo, in the press).

  18. Spooner, B. S., Yamada, K. M. & Wessells, N. K. J. Cell Biol. 49, 595–613 (1971).

    Article  CAS  Google Scholar 

  19. Yamada, K. M., Spooner, B. S. & Wessells, N. K. J. Cell Biol. 49, 614–635 (1971).

    Article  CAS  Google Scholar 

  20. Laduena, M. A. & Wessells, N. K. Devl Biol. 30, 427–440 (1973).

    Article  Google Scholar 

  21. Ross, J., Olmsted, J. B. & Rosenbaum, J. L. Tissue Cell 7, 107–136 (1975).

    Article  CAS  Google Scholar 

  22. Miranda, A. F., Godman, G. C. & Tanenbaum, S. W. J. Cell Biol. 62, 481–500, 406–423 (1974).

    Article  Google Scholar 

  23. Atlas, S. J. & Lin, S. J. Cell Biol. 76, 360–370 (1978).

    Article  CAS  Google Scholar 

  24. Lin, D. C. & Lin, S. Proc. natn. Acad. Sci. U.S.A. 76, 2345–2349 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Beebe, D. C., Feagans, D. E., Blanchette-Mackie, E. J. & Nau, M. Science 206, 836–838 (1979).

    Article  ADS  CAS  Google Scholar 

  26. Hagiwara, S. Adv. Biophys. 4, 71–102 (1973).

    CAS  PubMed  Google Scholar 

  27. Jack, J. J. B., Noble, D. & Tsien, R. W. Electric Current Flow in Excitable Cells (Clarendon, Oxford, (1971).

    Google Scholar 

  28. Katz, B. The Release of Neuronal Transmitter Substances (University Press, Liverpool, (1969).

    Google Scholar 

  29. Gray, E. G. Prog. Brain Res. 49, 207–234 (1976).

    Article  Google Scholar 

  30. Haga, T., Abe, T. & Kurokawa, M. FEBS Lett. 39, 291–295 (1974).

    Article  CAS  Google Scholar 

  31. Llinas, R. & Sugimori, M. J. Physiol., Lond. 305, 171–195, 197–213 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, J., Kameyama, M. & Yamaguchi, K. Breakdown of cytoskeletal filaments selectively reduces Na and Ca spikes in cultured mammal neurones. Nature 294, 82–85 (1981). https://doi.org/10.1038/294082a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/294082a0

  • Springer Nature Limited

This article is cited by

Navigation