Skip to main content
Log in

Expression of Tn9-derived chloramphenicol resistance in Bacillus subtilis

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The ability of cells to discriminate between homologous and foreign genes manifests itself differently from one species to the next. Escherichia coli is well known for its ability to express genes from various donor species, including Bacillus subtilis1,2. In contrast, B. subtilis strongly discriminates against the expression of E. coli genes (there have been no corroborated reports of the expression of a wholly intact E. coli gene in B. subtilis) but expresses genes from other Gram-positive bacteria such as Staphylococcus aureus3. This apparent asymmetry in the expression of heterologous genes between E. coli and B. subtilis may reflect fundamental differences in the mechanisms of gene expression in these two model systems. Here, we have overcome the inability of B. subtilis to express E. coli chloramphenicol resistance (Cmr) by supplanting the native regulatory element(s) of this Tn9-derived gene with B. subtilis DNA fragments, which represents the first step towards dissecting the nature of this asymmetric barrier to gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kreft, J., Bernhard, K. & Goebel, W. Molec. gen. Genet. 162, 59–67 (1978).

    Article  CAS  Google Scholar 

  2. Duncan, C. H., Wilson, G. A. & Young, F. E. Gene 1, 153–167 (1977).

    Article  CAS  Google Scholar 

  3. Gryczan, T. J. & Dubnau, P. Proc. natn. Acad. Sci. U.S.A. 75, 1428–1432 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Gaffney, D. F., Foster, T. J. & Shaw, W. V. J. gen. Microbiol. 109, 351–358 (1978).

    Article  CAS  Google Scholar 

  5. Shaw, W. V. & Brodsky, R. F. J. Bact. 95, 28–36 (1968).

    CAS  Google Scholar 

  6. Winshell, E. & Shaw, W. V. J. Bact. 98, 1248–1257 (1969).

    CAS  PubMed  Google Scholar 

  7. Shaw, W. V. et al. Nature 282, 870–872 (1979).

    Article  ADS  CAS  Google Scholar 

  8. Soberon, X., Covarrubias, L. & Bolivar, F. Gene 9, 287–305 (1980).

    Article  CAS  Google Scholar 

  9. Shaw, W. V. Meth. Enzym. 43, 737–755 (1975).

    Article  CAS  Google Scholar 

  10. Prentki, P., Karch, F., lida, S. & Meyer, J. Gene (in the press).

  11. Uhlin, B. E. & Nordström, K. Plasmid 1, 1 (1977).

    Article  CAS  Google Scholar 

  12. Ehrlich, S. D. Proc. natn. Acad. Sci. U.S.A. 74, 1680–1682 (1977).

    Article  ADS  CAS  Google Scholar 

  13. Sharrock, W. J., Gold, B. M. & Rabinowitz, J. C. J. molec. Biol. 135, 627–638 (1979).

    Article  CAS  Google Scholar 

  14. Bradford, M. Analyt. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  15. Alton, K. N. & Vapnek, D. Nature 282, 864–869 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Gryczan, T. J., Contente, S. & Dubnau, D. J. Bact. 134, 318–329 (1978).

    CAS  PubMed  Google Scholar 

  17. Bolivar, F., Rodriguez, R., Betlach, M. & Boyer, H. W. Gene 2, 75–93 (1977).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfarb, D., Doi, R. & Rodriguez, R. Expression of Tn9-derived chloramphenicol resistance in Bacillus subtilis. Nature 293, 309–311 (1981). https://doi.org/10.1038/293309a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/293309a0

  • Springer Nature Limited

This article is cited by

Navigation