Skip to main content
Log in

Raman investigation of ring configurations in vitreous silica

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Random network models of glass structures1 provide satisfactory qualitative descriptions of many properties of glasses (see reviews in refs 2–4). However, to obtain good quantitative agreement between theoretical analyses and experimental observations5–11 it is often necessary to assume that specific ring structures in the random networks have special importance. In the case of vitreous silica (v-SiO2), distributions of loops of SiO4 tetrahedra in the random network have been invoked5–9 to match calculated and experimental X-ray radial distribution functions (RDF). High resolution X-ray photoelectron spectra12 of v-SiO2 and quartz also provide evidence for the occurrence of four-, six- and higher-membered rings of SiO4 tetrahedra in v-SiO2. Raman spectra are also sensitive to local microstructures in vitreous solids. We have therefore examined the question of rings in the structure of v-SiO2 by comparing its Raman spectrum with spectra of crystalline silica polymorphs whose shortest loops contain four (coesite) and six (for example, α-quartz) tetrahedra. This comparison indicates that the sharp shoulder at 490 cm−1 in the spectrum of v-SiO2, previously attributed to a defect structure3 or a longitudinal optic mode14, can be assigned to four-membered ring structure. We discuss here possible basis for the stability of four-membered rings of SiO4 tetrahedra in v-SiO2 at ambient pressure. Possible reasons for the absence of the 490 cm−1 band in the vibrational density-of-states derived for a random network model by Bell and co-workers12,15 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zachariasen, W. H. J. Am. chem. Soc. 54, 3841–3851 (1932).

    Article  CAS  Google Scholar 

  2. Bockris, J., O'M & Reddy, A. K. N. Modern Electrochemistry, 594–618 (Plenum, New York, 1970).

    Google Scholar 

  3. Cooper, A. R. in Borate Glasses, Structure, Properties, Application (eds Pye, L. D., Frechette, V. D. & Kreidl, N. J.), 167–181 (Plenum, New York, 1978).

    Book  Google Scholar 

  4. Gaskell, P. H. J. Phys. C: Solid St. Phys. 12, 4337–4368 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Dean, P. Nature 210, 257–259 (1966).

    Article  ADS  CAS  Google Scholar 

  6. Evans, D. L. & King, S. V. Nature 212, 1353–1354 (1966).

    Article  ADS  CAS  Google Scholar 

  7. Bell, R. J. & Dean, P. Nature 212, 1354–1356 (1966).

    Article  ADS  CAS  Google Scholar 

  8. King, S. V. Nature 213, 1112–1113 (1967).

    Article  ADS  CAS  Google Scholar 

  9. Bell, R. J. & Dean, P. Phil. Mag. 25, 1381–1398 (1972).

    Article  ADS  CAS  Google Scholar 

  10. Alben, R., Weaire, D., Smith, J. E. Jr & Brodsky, M. H. Phys. Rev. B11, 2271–2296 (1975).

    Article  ADS  CAS  Google Scholar 

  11. Bell, R. J., Carnevale, A., Kurkjian, C. R. & Peterson, G. E. J. non-cryst. Solids 35/36, 1185–1190 (1980).

    Article  ADS  Google Scholar 

  12. Nucho, R. N. & Madhukar, A. Phys. Rev. B21, 1576–1588 (1980).

    Article  ADS  CAS  Google Scholar 

  13. Stolen, R. H. & Walrafen, G. E. J. chem. Phys. 64, 2623–2631 (1976).

    Article  ADS  CAS  Google Scholar 

  14. Galeener, F. L. & Lucovsky, G. Phys. Rev. Lett. 37, 1474–1478 (1976).

    Article  ADS  CAS  Google Scholar 

  15. Bell, R. J., Bird, N. F. & Dean, P. J. Phys. C: Solid St. Phys. 1, 299–303 (1968).

    Article  ADS  CAS  Google Scholar 

  16. Sharma, S. K. Yb. Carnegie Instn. Wash. 77, 902–904 (1978).

    Google Scholar 

  17. Bell, R. J. & Dean, P. in Amorphous Materials (eds Douglas, R. W. & Ellis, B.) 443–451 (Wiley, New York, 1972).

    Google Scholar 

  18. Sen, P. N. & Thorpe, M. F. Phys. Rev. B15, 4030–4038 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Laughlin, R. B. & Joannopoulos, J. D. Phys. Rev. B6, 2942–2952 (1977).

    Article  Google Scholar 

  20. Galeener, F. L. Phys. Rev. B19, 4292–4297 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Zoltai, T. Am. Miner. 45, 960–973 (1960).

    CAS  Google Scholar 

  22. Bates, J. B. & Quist, A. S. J. chem. Phys. 56, 1528–1533 (1972).

    Article  ADS  CAS  Google Scholar 

  23. Bates, J. B. J. chem. Phys. 57, 4042–4047 (1972).

    Article  ADS  CAS  Google Scholar 

  24. Sharma, S. K. & Simons, B. Am. Miner. 66, 118–126 (1981).

    CAS  Google Scholar 

  25. White, W. B. in Infrared and Raman Spectroscopy of Lunar and Terrestrial Minerals (ed. Karr, C. Jr) 325–358 (Academic, New York, 1975).

    Book  Google Scholar 

  26. Asell, J. F. & Nicol, M. J. chem. Phys. 49, 5395–5399 (1968).

    Article  ADS  CAS  Google Scholar 

  27. Bates, J. B., Hendricks, R. W. & Shaffer, L. B. J. chem. Phys. 61, 4163–4176 (1974).

    Article  ADS  CAS  Google Scholar 

  28. Greaves, G. N. J. non-cryst. Solids 32, 295–311 (1979).

    Article  ADS  CAS  Google Scholar 

  29. Mikkelsen, J. C. Jr & Galeener, F. L. J. non-cryst. Solids 37, 71–84 (1980).

    Article  ADS  CAS  Google Scholar 

  30. Megaw, H. D., Kempster, C. J. E. & Radoslovich, E. W. Acta crystallogr. 15, 1017–1035 (1962).

    Article  CAS  Google Scholar 

  31. Bell, R. J. & Dean, P. Discuss. Faraday Soc. 50, 55–61 (1970).

    Article  Google Scholar 

  32. Mass, M. Phys. Chem. Solids 31, 415–422 (1970).

    Article  ADS  Google Scholar 

  33. Dean, P. in Localized Excitations in Solids (ed. Wallis, R. F.) 109–116 (Plenum, New York, 1968).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, S., Mammone, J. & Nicol, M. Raman investigation of ring configurations in vitreous silica. Nature 292, 140–141 (1981). https://doi.org/10.1038/292140a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/292140a0

  • Springer Nature Limited

This article is cited by

Navigation