Skip to main content
Log in

Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Although cell-stained sections have suggested heterogeneity in the neostriatum1, more conclusive evidence has come from selective neurochemical staining for receptors, enzymes or neural connections. For example, opiate receptors in the rat striatum are concentrated in discrete islands and in a streak under the corpus callosum2,3—regions that lack any visible morphological distinction. In the monkey, cortical afferent fibres terminate in intricate patterns4. In the cat striatum, variations in the intensity of acetycholinesterase (AChE) staining5 coincide with complex mosaic patterns of striatal efferent neurones, with cortical afferent terminations6 and with enkephalin-like immunoreactivity7. In both cats8 and monkeys9, thalamic afferent fibres, from the parafascicular–centre median complex, terminate in discrete clusters. Even the intensely studied nigrostriatal dopamine pathway, previously assumed to project diffusely throughout the caudate, can be shown to be heterogeneous by pharmacological methods10. To extend this evidence, we decided to examine, on serial sections of the same rat striatum, four different histological markers of striatal heterogeneity. We now report that there is a precise mosaic ‘fit’ in striatal ‘islands’ of closely packed opiate receptors, vacancies in the termination of parafascicular projections and AChE-poor zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mensah, P. L. Brain Res. 137, 53–66 (1977).

    Article  CAS  Google Scholar 

  2. Pert, C. B., Kuhar, M. J. & Snyder, S. H. Life Sci. 16, 1849–1854 (1975).

    Article  CAS  Google Scholar 

  3. Pert, C. B., Kuhar, M. J. & Snyder, S. H. Proc. natn. Acad. Sci. U.S.A. 73, 3729–3733 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Goldman, P. S. & Nauta, W. J. H. J. comp. Neurol. 171, 369–386 (1977).

    Article  Google Scholar 

  5. Graybiel, A. M., Ragsdale, C. W. & Moon Edley, S. Expl Brain Res. 34, 189–195 (1979).

    Article  CAS  Google Scholar 

  6. Ragsdale, C. W. & Graybiel, A. M. Soc. Neurosci. Abstr. 5, 78 (1979).

    Google Scholar 

  7. Greybiel, A. M., Ragsdale, C. W., Yoneoka, E. S. & Elde, R. P. Soc. Neurosci. Abstr. 6, 342 (1980).

    Google Scholar 

  8. Royce, G. J. Brain Res. 146, 145–150 (1978).

    Article  CAS  Google Scholar 

  9. Kalil, K. Brain Res. 140, 333–339 (1978).

    Article  CAS  Google Scholar 

  10. Olson, L., Seiger, A. & Fuxe, K. Brain Res. 44, 283–288 (1972).

    Article  CAS  Google Scholar 

  11. Herkenham, M. & Pert, C. B. Proc. natn. Acad. Sci. U.S.A. 77, 5532–5536 (1980).

    Article  ADS  CAS  Google Scholar 

  12. Herkenham, M. J. comp. Neurol. 183, 487–518 (1979).

    Article  CAS  Google Scholar 

  13. Hardy, H., Heimer, L., Switzer, R. & Watkins, D. Neurosci. Lett. 3, 1–5 (1976).

    Article  CAS  Google Scholar 

  14. Pert, C. B., Taylor, D. P., Pert, A., Herkenham, M. A. & Kent, J. L. in Neural Peptides and Neuronal Communication (eds Costa, E. & Trabucchi, M.) 581–589 (Raven, New York, 1980).

    Google Scholar 

  15. Bowen, W. D., Gentleman, S., Herkenham, M. & Pert, C. B. Proc. natn. Acad. Sct. U.S.A. (in the press).

  16. Graybiel, A. M. & Ragsdale, C. W. Proc. natn. Acad. Sci. U.S.A. 75, 5723–5726 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Goodman, R. R., Snyder, S. H., Kuhar, M. J. & Young, W. S. III Proc. natn. Acad. Sci. U.S.A. 77, 6239–6234 (1980).

    Article  ADS  CAS  Google Scholar 

  18. Lord, J. A. H., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Nature 267, 495–499 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Potter, A., Field, P. M. & Raisman, G. Brain Res. Rev. 1, 185–205 (1979).

    Article  Google Scholar 

  20. Kent, J. L., Pert, C. B. & Herkenham, M. Devl Brain REF. (in the press).

  21. Birdsall, N. J. M., Hulme, E. C. & Burgen, A. Proc. R. Soc. A207, 1–12 (1980).

    ADS  CAS  Google Scholar 

  22. Keefer, D. A. Cell Tissue Res. 209, 167–175 (1980).

    Article  CAS  Google Scholar 

  23. de la Torre, J. C. & Surgeon, J. W. Histochemistry 49, 81–93 (1976).

    Article  CAS  Google Scholar 

  24. Pert, A. in Characteristics and Function of Opioids Developments in Neuroscience Vol. 4 (eds Van Ree, J. M. & Terenius, L.) 389–401 (Elsevier, Amsterdam, 1978).

    Google Scholar 

  25. Iwatsubo, K. & Clouet, D. H. Biochem. Pharmac. 24, 1499–1503 (1975).

    Article  CAS  Google Scholar 

  26. Hong, J. S., Yang, H.-Y. T., Fratta, W. & Costa, E. J. Pharmac. exp. Ther. 205, 141–147 (1978).

    CAS  Google Scholar 

  27. Parenti, M., Gentleman, S. & Neff, N. H. Fedn Proc. 39, 516 (1980).

    Google Scholar 

  28. Hökfelt, T. et al. in Neural Peptides and Neuronal Communication (eds Costa, E. & Trabucchi, M.) 1–23 (Raven, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herkenham, M., Pert, C. Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum. Nature 291, 415–418 (1981). https://doi.org/10.1038/291415a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291415a0

  • Springer Nature Limited

This article is cited by

Navigation