Skip to main content
Log in

Theory agrees with experimental thermal denaturation of short DNA restriction fragments

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Experimental melting transitions of several natural DNAs of known nucleotide sequences have recently been obtained. The differential melting curves of these DNAs—φX174 DNA1–3, fd DNA4 and SV40 DNA5—all show distinctive sets of peaks or fine structure. Theoretical melting curves calculated from the sequences and a few a priori parameters have not accurately predicted the experimental transitions2,6,7. Although calculated fine structure resembled experimental curves in some cases, the characteristic features of a DNA's differential melting curve could not generally be produced. Azbel8,9 and Gabbarro-Arpa et al.5 have recently obtained good agreement between calculated and experimental curves using a different theoretical approach—only ground-state configurations of DNA were considered for temperatures inside the transition region. Their results suggest that the basic model of DNA melting, common to all theoretical approaches, is accurate. We have used here an exact theoretical approach to calculate melting curves of four DNA restriction fragments of 95–301 base pairs containing the lactose promoter region (Fig. 1). Theoretical curves agree very well with the experimental transitions published by Hardies et al.10 and obtained in this laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lyubchenko, Y. L., Vologodskii, A. V. & Frank-Kamenetskii, M. D. Nature 271, 28–31 (1978).

    Article  ADS  CAS  Google Scholar 

  2. Vizard, D. L., White, R. A. & Ansevin, A. T. Nature 275, 250–251 (1978).

    Article  ADS  CAS  Google Scholar 

  3. Wada, A., Tachibana, H., Ueno, A., Husimi, V. & Machida, Y. Nature 269, 352–353 (1977).

    Article  ADS  CAS  Google Scholar 

  4. Tachibana, H., Wada, A., Gotoh, O. & Takanami, M. Biochim. biophys. Acta 517, 319–328 (1978).

    Article  CAS  Google Scholar 

  5. Gabbarro-Arpa, J., Tougard, P. & Reiss, C. Nature 280, 515–517 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Tong, B. T. & Battersby, S. J. Biopolymers 18, 1917–1936 (1979).

    Article  CAS  Google Scholar 

  7. Ueno, S., Tachibana, H., Husimi, Y. & Wada, A. J. Biochem. 84, 917–924 (1978).

    Article  CAS  Google Scholar 

  8. Azbel, M. Y. Proc. natn. Acad. Sci. U.S.A. 76, 105 (1979).

    Article  ADS  Google Scholar 

  9. Azbel, M. Y. Biopolymers 19, 61–109 (1980).

    Article  CAS  Google Scholar 

  10. Hardies, S. C., Hillen, W., Goodman, T. C. & Wells, R. D. J. biol. Chem. 254, 10128–10134 (1979).

    CAS  PubMed  Google Scholar 

  11. Dickson, R. C., Abelson, J., Barnes, W. M. & Reznikoff, W. S. Science 187, 27–35 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Lyubchenko, Y. L., Frank-Kamenetskii, M. D., Vologodskii, A. V., Luzurkin, Y. & Gause, G. G. Jr Biopolymers 15, 1019–1036 (1976).

    Article  CAS  Google Scholar 

  13. Poland, D. & Scheraga, H. A. Theory of Helix–Coil Transitions in Biopolymers (Academic, New York, 1970).

    Google Scholar 

  14. Wartell, R. M. & Montroll, E. W. Adv. chem. Phys. 22, 129–203 (1972).

    CAS  Google Scholar 

  15. Poland, D. Biopolymers 13, 1859–1871 (1974).

    Article  CAS  Google Scholar 

  16. Applequist, J. & Damle, V. J. chem. Phys. 39, 10 (1963).

    Article  Google Scholar 

  17. Landau, L. D. & Lifshitz, E. M. Statistical Physics (Addison-Wesley, Reading, Massachusetts, 1958).

    MATH  Google Scholar 

  18. Botchan, P. J. molec. Biol. 105, 161 (1976).

    Article  CAS  Google Scholar 

  19. Jones, B. B., Chan, H., Rothstein, S., Wells, R. D. & Reznikoff, W. S. Proc. natn. Acad. Sci. U.S.A. 74, 4914 (1977).

    Article  ADS  CAS  Google Scholar 

  20. Vollenweider, H. J., Fiandt, M. & Szybalski, W. Science 205, 508 (1979).

    Article  ADS  CAS  Google Scholar 

  21. Hardies, S. C. & Wells, R. D. Gene 7, 1–14 (1979).

    Article  CAS  Google Scholar 

  22. Wartell, R. M. & Reznikoff, W. S. Gene (in the press).

  23. Wartell, R. M. Nucleic Acids Res. 4, 2719 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benight, A., Wartell, R. & Howell, D. Theory agrees with experimental thermal denaturation of short DNA restriction fragments. Nature 289, 203–205 (1981). https://doi.org/10.1038/289203a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/289203a0

  • Springer Nature Limited

This article is cited by

Navigation