Skip to main content
Log in

Defective synthesis of HbE is due to reduced levels of βE mRNA

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Haemoglobin E (α2β226GlU→Lys) is one of the commonest haemoglobin variants. There are an estimated 30 million carriers of the βE gene in South-East Asia, where they comprise more than 50% of the population in some areas1,2; however, the reasons for this high frequency have never been adequately explained. Homozygotes for HbE may be mildly anaemic, but they do not have any clinical disability3,4. However, individuals heterozygous for both βE and β thalassaemia (HbE/β thalassaemia) have a severe clinical disorder which in some cases may approach that seen in homozygous β thalassaemia3,5,6 and which is by far the commonest form of symptomatic thalassaemia in the Indian subcontinent and South-East Asia. Haemoglobin E is the only common structural variant which interacts with β thalassaemia to produce such a severe disorder and the underlying mechanism of the interaction is not known. We have studied several homozygotes and heterozygotes for HbE and show here that the βE chain is inefficiently synthesized and produces the phenotype of a mild form of β thalassaemia; hence, when inherited together with β thalassaemia it causes a marked β-chain deficit. Furthermore, the mechanism for the defective production of βE chains seems to be a reduction of βE mRNA, a most unexpected finding in a disorder caused by a single amino acid substitution and presumably by a single nucleotide change in the DNA of the β globin gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flatz, G. Humangenetik 3, 189–234 (1967).

    CAS  PubMed  Google Scholar 

  2. Sicard, D., Lieurzou, Y., Lapoumeroulie, C. & Labie, D. Hum. Genet. 50, 327–336 (1979).

    Article  CAS  Google Scholar 

  3. Chernoff, A. I. et al. J. Lab. clin. Med. 47, 455–489 (1956).

    CAS  PubMed  Google Scholar 

  4. Fairbanks, V. F., Oliveros, R., Brandabur, J. H., Willis, R. R. & Fiester, R. F. Am. J. Hemat. 8, 109–121 (1980).

    Article  CAS  Google Scholar 

  5. Bamapravati, N., Na-Nakorn, S., Wasi, P. & Tuchinda, S. Am. J. clin. Path. 47, 745–753 (1967).

    Article  Google Scholar 

  6. Wasi, P. et al. Ann. N.Y. Acad. Sci. 165, 60–82 (1969).

    Article  ADS  CAS  Google Scholar 

  7. Frischer, H. & Bowman, J. J. Lab. clin. Med. 85, 531–538 (1975).

    CAS  PubMed  Google Scholar 

  8. Higgs, D. R. et al. Lancet ii, 272–276 (1979).

    Article  Google Scholar 

  9. Fairbanks, V. F., Gilchrist, G. S., Brimhall, B., Jereb, J. A. & Goldston, E. C. Blood 53, 109–115 (1979).

    CAS  PubMed  Google Scholar 

  10. Nute, P. E. Ann. N.Y. Acad. Sci. 241, 39–60 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Weatherall, D. J., Clegg, J. B., Na-Nakorn, S. & Wasi, P. Br. J. Haemat. 16, 251–267 (1969).

    Article  CAS  Google Scholar 

  12. Wood, W. G. & Stamtoyannopoulos, G. J. clin. Invest. 55, 567–578 (1975).

    Article  CAS  Google Scholar 

  13. Chalevalakis, G., Clegg, J. B. & Weatherall, D. J. Proc. natn. Acad. Sci. U.S.A. 72, 3835–3857 (1975).

    Google Scholar 

  14. Hunt, D. M. et al. Br. J. Haemat. 45, 53–64 (1980).

    Article  CAS  Google Scholar 

  15. Feldman, R. & Rieder, R. F. Blood 42, 783–791 (1973).

    CAS  PubMed  Google Scholar 

  16. Pagnier, J., Wajcman, H. & Labie, D. FEBS Lett. 45, 252–255 (1974).

    Article  CAS  Google Scholar 

  17. Testa, U. et al. Acta haemat. 64, 42–52 (1980).

    Article  CAS  Google Scholar 

  18. Berman et al. Clin. Res. 28, 350A (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traeger, J., Wood, W., Clegg, J. et al. Defective synthesis of HbE is due to reduced levels of βE mRNA. Nature 288, 497–499 (1980). https://doi.org/10.1038/288497a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288497a0

  • Springer Nature Limited

This article is cited by

Navigation