Skip to main content
Log in

Quantification of noradrenaline iontophoresis

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Several problems are encountered when iontophoresis1,2 is used to study the effects of putative neurotransmitters. The most significant is that it is not usually practical to estimate the concentration of drug obtained at the tip of the microelectrode by a current of a given strength. The usual methods, albeit rarely used, include measurement of transport numbers3,4, the use of ion-sensitive microelectrodes5,6 and quantitative fluorescent microscopy7. With the exception of the ion-sensitive microelectrodes developed for acetylcholine5, these techniques are elaborate and time consuming, and cannot be routinely applied to every electrode used. Furthermore, conventional multibarrel microelectrodes have high-impedance recording barrels and thus often display low signal-to-noise ratios when recording single-cell activity, the noise being increased during iontophoresis. We describe here a technique which largely overcomes the problem of low spike signal-to-noise ratio in conventional multibarrel electrodes, and which, unlike the latter, also allows precise determination of the concentration of noradrenaline in the environment of the cell, which affects its excitability. The recording and iontophoretic properties of these electrodes have been described previously8. The use of these electrodes to quantify precisely iontophoresed noradrenaline by adapting polarographic techniques is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kelly, J. S. in Handbook of Psychopharmacology Vol. 2 (eds Iversen, L. L., Iversen, S. H. & Snyder, S. D.) 29–67 (Plenum, New York, 1975).

    Google Scholar 

  2. Bradshaw, C. M. & Szabadi, E. Neuropharmacology 13, 407–415 (1974).

    Article  CAS  Google Scholar 

  3. Hoffer, B. J., Neff, N. & Siggins, G. R. J. Neuropharmac. 10, 175–180 (1971).

    Article  CAS  Google Scholar 

  4. Clarke, G., Hill, R. G. & Simmonds, M. A. Br. J. Pharmac. 48, 156–161 (1973).

    Article  CAS  Google Scholar 

  5. Dionne, V. E. Biophys. J. 16, 705–717 (1976).

    Article  ADS  CAS  Google Scholar 

  6. Morris, M. E. & Krnjevic, K. in Ion-selective Microelectrodes (eds Berman, H. J. & Herbert, N. C.) 145–156 (Plenum, New York, 1974).

    Google Scholar 

  7. Purves, R. D. J. Neurosci. Meth. 1, 165–178 (1979).

    Article  CAS  Google Scholar 

  8. Armstrong-James, M. & Millar, J. J. Neurosci. Meth. 1, 279–287 (1970).

    Article  Google Scholar 

  9. Adams, R. N. J. pharmac. Sci. 58, 1171–1183 (1969).

    Article  CAS  Google Scholar 

  10. McCreery, R. L., Dreilling, R. & Adams, R. N. Brain Res. 73, 23–33 (1974).

    Article  CAS  Google Scholar 

  11. Armstrong-James, M., Fox, K. & Millar, J. J. Neurosci. Meth. (in the press).

  12. Fox, K., Armstrong-James, M. & Millar, J. J. Neurosci. Meth. (in the press).

  13. Armstrong-James, M. & Millar, J. J. Physiol., Lond. (in the press).

  14. Armstrong-James, M. & Millar, J. J. Physiol., Lond. (in the press).

  15. Armstrong-James, M., Kruk, Z. L. & Millar, J. J. Physiol., Lond. (in the press).

  16. Marsden, C. A., Conti, J., Strope, E., Curzon, G. & Adams, R. N. Brain Res. 171, 85–99 (1979).

    Article  CAS  Google Scholar 

  17. Ponchon, J. L., Cespuglio, R., Gonon, F., Jouvet, M. & Pujol, J. F. Analyt. Chem. 51, 1483–1486 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Armstrong-James, M., Millar, J. & Kruk, Z. Quantification of noradrenaline iontophoresis. Nature 288, 181–183 (1980). https://doi.org/10.1038/288181a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/288181a0

  • Springer Nature Limited

Navigation