Skip to main content
Log in

Can galaxy warps be used to provide constraints on halo properties?

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

The prevalence of flat rotation curves in external galaxies1 strongly suggests an extensive but as yet unseen halo component. However, as direct observations of the implied matter distribution have proved very elusive, more indirect methods are needed to constrain its properties. At the same time, the explanation of observed warps in galaxies3–7 has been intensively studied by dynamicists, resulting in the appearance of many rival mechanisms (see ref. 8 for a review). For galaxies with companions, the tidal interaction theory is the most attractive, but fails to account for the observed bending of our Galaxy “by a factor approaching 3” (ref. 9). The problem of the rapid kinematical disruption which results if one follows particle orbits in a self-consistent disk is avoided if one accepts the existence of a dominant spherical (halo) component in the region of the warps8,10. Here, we explore the consequence of separating disk and halo mass distributions using a recently developed theory of bending waves2. In this theory, the height of bending allows the functional form of the disk density distribution to be determined. With proper normalization this determination allows the halo density to be inferred from the rotation curve. We will discuss the warps in our Galaxy and in galaxies NGC2841 and M33, for which a relatively complete set of reduced data is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin, V. C. IAU Symp. 84, 211 (1978).

    ADS  CAS  Google Scholar 

  2. Bertin, G. & Mark, J. W-K. Astr. Astrophys. (in the press).

  3. Burke, B. F., Astrophys, J. 62, 90 (1957). Kerr, F. J. Astrophys. J. 62, 93 (1957).

    Google Scholar 

  4. Henderson, A. P. IAU Symp. 84, 493 (1978).

    ADS  CAS  Google Scholar 

  5. Bosma, A. thesis, Univ. Groningen (1978).

  6. Rogstad, D. H., Wright, M. C. H. & Lockhart, I. A. Astrophys. J. 204, 703 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Sancisi, R. Astr. Astrophys. 53, 159 (1976).

    ADS  CAS  Google Scholar 

  8. Saar, E. M. IAU Symp. 84, 513 (1978).

    ADS  Google Scholar 

  9. Hunter, C. & Toomre, A. Astrophys. J. 155, 747 (1969).

    Article  ADS  Google Scholar 

  10. Tubbs, A. D. & Sanders, R. H. Astrophys. J. 230, 736 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Kulsrud, R. M., Mark, J. W-K. & Caruso, A. Astrophys. Space Sci. 14, 52 (1971).

    Article  ADS  Google Scholar 

  12. Mark, J. W-K. Astrophys. J. 206, 418 (1976).

    Article  ADS  Google Scholar 

  13. Tsikoudi, V. thesis, Univ. Texas (1977).

  14. Sandage, A. & Humphreys, R. M. Astrophys. J. Lett. 236, L1 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Bertin, G. & Mark, J. W-K. Astr. Astrophys. 64, 389 (1978).

    ADS  Google Scholar 

  16. Knapp, G. R., Tremaine, S. D. & Gunn, J. E. Astrophys. J. 83, 1585 (1978).

    ADS  CAS  Google Scholar 

  17. Oort, J. H. Bull. astr. Insts Neth. 15, 46 (1960).

    ADS  Google Scholar 

  18. Blitz, L., Fich, M. & Stark, A. A. in IAU Symp. 87 (in the press).

  19. Larson, R. B. & Tinsley, B. M. Astrophys. J. 219, 46 (1978).

    Article  ADS  Google Scholar 

  20. Houten, C. J., van Oort, J. H. & Hiltner, W. A. Astrophys. J. 120, 439 (1954).

    Article  ADS  Google Scholar 

  21. Freeman, K. C. Astrophys. J. 160, 811 (1970).

    Article  ADS  Google Scholar 

  22. Peebles, P. J. E. Lecture notes for L'Ecole d'Eté de Physique Théoretique, Les Houches (Gordon and Breach, London, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, G., Mark, JK. Can galaxy warps be used to provide constraints on halo properties?. Nature 287, 705–706 (1980). https://doi.org/10.1038/287705a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287705a0

  • Springer Nature Limited

This article is cited by

Navigation