Skip to main content
Log in

Internal mobility of ferrocytochrome c

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

In the refinement of the X-ray diffraction structures of molecules, it is conventional to introduce atomic ‘temperature factors’ of the Debye–Waller form to characterize the widths of the electron density peaks corresponding to the atoms1. Although these factors are known to include a variety of contributions other than thermal fluctuations of the atomic positions2, recent progress in the refinement of protein structures has led to inferences concerning atomic mobilities from the temperature factor data for several proteins3–10. Atomic position fluctuations can be calculated independently by the molecular dynamics method, in which the classical equations of motion for the atoms of an equilibrated protein are solved on a computer11–16. We now show that the X-ray diffraction and dynamical simulation methods yield similar pictures of the atomic mobility in tuna ferrocytochrome c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blundell, T. L. & Johnson, L. N. Protein Crystallography (Academic, London, 1976).

    Google Scholar 

  2. Willis, B. T. M. & Pryor, A. W. Thermal Vibrations in Crystallography (Cambridge University Press, 1975).

    Google Scholar 

  3. Parak, F. & Formanek, H. Acta crystallogr. A27, 573–578 (1971).

    Article  CAS  Google Scholar 

  4. Frauenfelder, H., Petsko, G. A. & Tsernoglou, D. Nature 280, 558–563 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Artymiuk, P. J. et al. Nature 280, 563–568 (1979).

    Article  ADS  CAS  Google Scholar 

  6. Huber, R. Nature 280, 538–539 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Sternberg, M. J. E., Grace, D. E. P. & Phillips, D. C. J. molec. Biol. 130, 231–253 (1979).

    Article  CAS  Google Scholar 

  8. Artymiuk, P. J., Blake, C. C. F. & Oatley, S. J. J. chem. Phys. 76, 813–815 (1979).

    CAS  Google Scholar 

  9. Sielecki, A. R. et al. J. molec. Biol. 134, 781–804 (1979).

    Article  CAS  Google Scholar 

  10. Watenpaugh, K. D., Sieker, L. C. & Jensen, L. H. J. molec. Biol. 138, 615–633 (1980).

    Article  CAS  Google Scholar 

  11. McCammon, J. A., Gelin, B. R. & Karplus, M. Nature 267, 585–590 (1977).

    Article  ADS  CAS  Google Scholar 

  12. McCammon, J. A., Wolynes, P. G. & Karplus, M. Biochemistry 18, 927–942 (1979).

    Article  CAS  Google Scholar 

  13. Karplus, M. & McCammon, J. A. Nature 277, 578 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Northrup, S. H., Pear, M. R., McCammon, J. A. & Karplus, M. Nature 286, 304–305 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Karplus, M. & McCammon, J. A. CRC Crit. Rev. Biochem. (in the press).

  16. McCammon, J. A. & Karplus, M. A. Rev. phys. Chem. 31, 29–45 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Takano, T. & Dickerson, R. E. Proc. natn. Acad. Sci. U.S.A. (in the press).

  18. Jack, A. & Levitt, M. Acta crystallogr. A34, 931–935 (1978).

    Article  Google Scholar 

  19. Takano, T. et al. J. biol. Chem. 252, 776–785 (1977).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Northrup, S., Pear, M., McCammon, J. et al. Internal mobility of ferrocytochrome c. Nature 287, 659–660 (1980). https://doi.org/10.1038/287659a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/287659a0

  • Springer Nature Limited

This article is cited by

Navigation