Skip to main content
Log in

Compensatory bilateral changes in dopamine turnover after striatal kainate lesion

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Diseases of the extrapyramidal systems like Parkinson's disease and Huntington's chorea have been closely associated with the basal ganglia1,2. In particular, the prominent symmetrical nigrostriatal dopaminergic systems play an important role in pathogenesis and symptomatology of motor disorders3–5. Biochemical6,7 and electrophysiological8,9 data indicate a functional relationship between the nigrostriatal pathways on the two brain hemispheres. Unilateral pharmacological manipulations result in short-term changes in contralateral dopamine (DA) release, and surgical lesions on one side lead to long-term alterations in the firing rate of contralateral dopaminergic neurones. We report here the effects of unilateral kainic acid-induced lesions of striatal cell bodies on ipsi- and contralateral striatal DA turnover. We present evidence that morphologically intact dopaminergic neurones on both sides possess compensatory mechanisms which can counteract striatal synaptic asymmetries. Such mechanisms could be responsible at least in part for the maintenance of symmetrical motor behaviour in unilaterally lesioned animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hornykiewicz, O. Biochem. Pharmac. 24, 1061–1065 (1975).

    Article  CAS  Google Scholar 

  2. Bruyn, G. W. Handbook of Clinical Neurology, Diseases of Basal Ganglia 6 (ed. Vinken, P. J. & Bruyn, G. W.) 298–377 (North-Holland, Amsterdam, 1968).

    Google Scholar 

  3. Fuxe, K., Hökfelt, T. & Ungerstedt, U. Metabolism of Amines in the Brain (eds Hooper, G.) 10–22 (Macmillan, London, 1969).

    Google Scholar 

  4. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K. & Seitelberger, F. J. neurol. Sci. 20, 415–455 (1973).

    Article  CAS  Google Scholar 

  5. Klawans, H. L. Eur. Neurol. 4, 148–163 (1970).

    Article  Google Scholar 

  6. Nieoullon, A., Cheramy, A. & Glowinski, J. Science 198, 416–418 (1977).

    Article  ADS  CAS  Google Scholar 

  7. Nieoullon, A., Cheramy, A., Leviel, V. & Glowinski, J. Eur. J. Pharmac. 53, 289–296 (1979).

    Article  CAS  Google Scholar 

  8. Hull, C. D., Levine, M. S., Buchwald, N. A., Heller, A. & Browning, R. A. Brain Res. 73, 241–262 (1974).

    Article  CAS  Google Scholar 

  9. Levine, M. S., Hull, C. D., Buchwald, N. A. & Villabianca, J. Brain Res. 78, 411–424 (1974).

    Article  CAS  Google Scholar 

  10. Schwarcz, R., & Coyle, J. T. Brain Res. 127, 235–249 (1977).

    Article  CAS  Google Scholar 

  11. Falck, B., Hillarp, N. -A., Thieme, G. & Thorp, A. J. Histochem. Cytochem. 10, 348–354 (1962).

    Article  CAS  Google Scholar 

  12. Löfström, A., Jonsson, G., Wiesel, F. -A. & Fuxe, K. J. Histochem. Cytochem. 24, 430–443 (1976).

    Article  Google Scholar 

  13. Andén, N. -E., Corrodi, H., Fuxe, K., Metabolism of Amines in the Brain (ed. Hooper, G.) 38–47 (Macmillan, London, 1969).

    Google Scholar 

  14. Schwarcz, R., Fuxe, K., Hökfelt, T., Andersson, K. & Coyle, J. T. in Dopaminergic Ergot Derivatives and Motor Function (eds Fuxe, K. & Calne, D. B.) 115–126 (Pergamon, Oxford, 1979).

    Book  Google Scholar 

  15. Gottesfeld, Z. & Jacobowitz, D. M. Brain Res. 169, 513–518 (1979).

    Article  CAS  Google Scholar 

  16. Roberts, P. J. & Anderson, S. D., J. Neurochem. 32, 1539–1545 (1979).

    Article  CAS  Google Scholar 

  17. Precht, W. & Yoshida, M. Brain Res. 32, 229–223 (1971).

  18. Groves, P. M., Wilson, C. J., Young, S. J. & Rebec, G. V. Science 190, 522–529 (1975).

    Article  ADS  CAS  Google Scholar 

  19. Schwarcz, R., Fuxe, K., Agnati, L. F., Hökfelt, T. & Coyle, J. T. Brain Res. 170, 485–495 (1979).

    Article  CAS  Google Scholar 

  20. Kemp, J. M. & Powell, T. P. S. Brain 93, 525–564 (1970).

    Article  CAS  Google Scholar 

  21. Nauta, W. S. H. & Domesick, V. B. in Dopaminergic Ergot Derivatives and Motor Function (eds Fuxe, K. & Calne, D. B.) 3–22 (Pergamon, Oxford, 1979).

    Book  Google Scholar 

  22. Björklund, A. & Lindvall, O. Brain Res. 83, 531–537 (1975).

    Article  Google Scholar 

  23. Korf, J., Zieleman, M. & Westerink, B. H. C. Nature 260, 257–258 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Geffen, L. B., Jessell, T. M., Cuello, A. C. & Iversen, L. L. Nature 260, 258–260 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Glick, S. D., Jerussi, T. P. & Fleischer, L. N. Life Sci. 18, 889–896 (1976).

    Article  CAS  Google Scholar 

  26. Schwarcz, R., Creese, I., Coyle, J. T. & Snyder, S. H. Nature 271, 766–768 (1978).

    Article  ADS  CAS  Google Scholar 

  27. Govoni, S. et al. Neurosci. Lett. 8, 207–210 (1978).

    Article  CAS  Google Scholar 

  28. Schwarcz, R., Fuxe, K., Hökfelt, T., & Goldstein, M. J. Neurochem. (in the press).

  29. König, J. F. R. & Klippel, R. A. The Rat Brain: A Stereotaxic Atlas of the Forebrain and Lower Parts of the Brain Stem (Williams and Wilkins, Baltimore, 1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, K., Schwarcz, R. & Fuxe, K. Compensatory bilateral changes in dopamine turnover after striatal kainate lesion. Nature 283, 94–95 (1980). https://doi.org/10.1038/283094a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/283094a0

  • Springer Nature Limited

This article is cited by

Navigation