Skip to main content
Log in

Primary structure of a chloramphenicol acetyltransferase specified by R plasmids

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Naturally occurring isolates of chloramphenicol-resistant bacteria commonly synthesise chloramphenicol acetyltransferase (EC 2.3.28; CAT) in amounts which are sufficient to account for the resistance phenotype and often harbour plas-mids which carry the structural gene for CAT1,2. The finding of CAT in such diverse prokaryotes as Proteus mirabilis, Agrobacterium tumefaciens, Streptomyces sp., and a soil Flavobacterium has led to speculation concerning the origin and evolution of the more commonly observed CAT variants specified by plasmids in clinically important bacteria2. To provide a more solid basis for studying the evolution and spread of CAT within prokaryotes we chose to determine the complete amino acid sequence of a type I variant of CAT, the variant known to be associated with most F-like plasmids conferring chloramphenicol resistance. The sequence has been determined by combining the results obtained from manual and automated sequential degradation with those obtained by mass spectrometry of peptides generated by enzymatic digestion. The directly determined primary structure is identical with that predicted by the DNA sequence analysis3 of the chloramphenicol resistance transponson Tn9 known to specify a type I variant of chloramphenicol acetyltransferase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaw, W. V. Biochem. Soc. Trans. 2, 834 (1974).

    Article  CAS  Google Scholar 

  2. Fitton, J. E., Packman, L. C., Harford, S., Zaidenzaig, Y. & Shaw, W. V. in Microbiology—1978 (ed. Schlessinger, D.) 249–252 (American Society for Microbiology, Washington, 1978).

    Google Scholar 

  3. Alton, N. K. & Vapnek, D. Nature 282, 864–869.

  4. Shaw, W. V. J. biol. Chem, 242, 687 (1967).

    CAS  PubMed  Google Scholar 

  5. Winshell, E. & Shaw, W. V. J. Bact. 99, 1248 (1969).

    Google Scholar 

  6. Gaffney, D. F., Foster, T. J. & Shaw, W. V. J. gen. Microbiol. 109, 351 (1978).

    Article  CAS  Google Scholar 

  7. Sands, L. C. & Shaw, W. V. Antimicrob. Agents Chemother. 3, 299 (1973).

    Article  CAS  Google Scholar 

  8. Shaw, W. V. Meth. Enzy. 43, 737 (1975).

    Article  CAS  Google Scholar 

  9. Engberg, B. & Nordström, K. J. Bact. 123, 179 (1975).

    CAS  PubMed  Google Scholar 

  10. de Crombrugge, B., Pastan, I., Shaw, W. V., & Rosner, J. L. Nature new Biol. 241, 237(1973).

    Article  Google Scholar 

  11. Zaidenzaig, Y. & Shaw, W. V. FEBS Lett. 62, 266 (1976).

    Article  CAS  Google Scholar 

  12. Shaw, W. V., Sands, L. C. & Datta, N. Proc. natn. Acad. Sci. U.S.A. 69, 3049 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Morris, H. R., Williams, D. H., Midwinter, G. G. & Hartley, B. S. Biochem. J. 141, 701(1974).

    Article  CAS  Google Scholar 

  14. Hartley, B. S. Biochem. J. 119, 895 (1970).

    Article  Google Scholar 

  15. Shotton, D. M. & Hartley, B. S. Biochem. J. 131, 643 (1973).

    Article  CAS  Google Scholar 

  16. Bridgen, J., Graffeo, A., Karger, B. L. & Waterfield, M. in Instrumentation in Amino Acid Sequence Analysis, 111–146 (Academic Press, London).

  17. Fitton, J. E. & Shaw, W. V. Biochem. J. 177, 575 (1979).

    Article  CAS  Google Scholar 

  18. Dell, A. & Morris, H. R. Biochem. biophys. Res. Commun. 78, 874 (1977).

    Article  CAS  Google Scholar 

  19. Zaidenzaig, Y. & Shaw, W. V. Eur. J. Biochem. 83, 553 (1978).

    Article  CAS  Google Scholar 

  20. Liddell, J. M., Shaw, W. V. & Swan, I. D. A. J. molec. Biol. 124, 285 (1978).

    Article  CAS  Google Scholar 

  21. Chou, P. Y. & Fasman, G. D. Biochemistry 13, 211 (1974).

    Article  CAS  Google Scholar 

  22. Rossmann, M. G., Moras, D. & Alsen, K. W. Nature 250, 194 (1974).

    Article  ADS  CAS  Google Scholar 

  23. Gibbons, I. & Perham, R. N. Biochem. J. 116, 843 (1970).

    Article  CAS  Google Scholar 

  24. Sutcliffe, J. G. Proc. natn. Acad. Sci. U.S.A. 75, 3737 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Ambler, R. P. & Scott, G. K. Proc. natn. Acad. Sci. U.S.A. 75, 560 (1978).

    Article  Google Scholar 

  26. Marcoli, R. Iida, S. & Bickle, T. (manuscript submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, W., Packman, L., Burleigh, B. et al. Primary structure of a chloramphenicol acetyltransferase specified by R plasmids. Nature 282, 870–872 (1979). https://doi.org/10.1038/282870a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282870a0

  • Springer Nature Limited

This article is cited by

Navigation