Skip to main content
Log in

Nebular condensation of Ga, Ge and Sb and the chemical classification of iron meteorites

  • Article
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Key parameters for classifying iron meteorites into genetic groups are concentrations of Ga and Ge. Their taxonomic value results from the combination of very wide concentration ranges in iron meteorites as a whole, with very narrow concentration ranges in most individual groups. The very wide intergroup ranges result from solar nebular condensation in widely varying conditions. Recent calculations show that the nebular condensation temperature of Ge is lower than that of any other siderophile, and that Sb and Ga are the next most volatile siderophiles. The narrow intragroup ranges of Ga and Ge reflect minimal fractionation during the crystallisation of cores, larger intragroup ranges for Sb result from a solid/liquid distribution ratio near 0.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wasson, J. T. Geochim. cosmochim. Acta 31, 161–180 (1967).

    Article  ADS  CAS  Google Scholar 

  2. Scott, E. R. D., Wasson, J. T. & Buchwald, V. F. Geochim. cosmochim. Acta 37, 1957–1983 (1973).

    Article  ADS  CAS  Google Scholar 

  3. Scott, E. R. D. & Wasson, J. T. Geochim. cosmochim. Acta 40, 103–115 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Goldberg, E., Uchiyama, A. & Brown, H. Geochim. cosmochim. Acta 2, 1–25 (1951).

    Article  ADS  CAS  Google Scholar 

  5. Lovering, J. F., Nichiporuk, W., Chodos, A. & Brown, H. Geochim. cosmochim. Acta 11, 263–278 (1957).

    Article  ADS  CAS  Google Scholar 

  6. Wasson, J. T. Meteorites—Classification and Properties (Springer, Berlin, 1974).

    Google Scholar 

  7. Buchwald, V. F. Handbook of iron Meteorites (University of California Press, 1975).

    Google Scholar 

  8. Scott, E. R. D. & Wasson, J. T. Rev. geophys. Space Phys. 13, 527–546 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Wasson, J. T. Icarus 12, 407–423 (1970).

    Article  ADS  CAS  Google Scholar 

  10. Scott, E. R. D. & Bild, R. W. Geochim. cosmochim. Acta 38, 1379–1391 (1974).

    Article  ADS  CAS  Google Scholar 

  11. Kelly, W. R. & Larimer, J. W. Geochim. cosmochim. Acta 41, 93–111 (1977).

    Article  ADS  CAS  Google Scholar 

  12. Scott, E. R. D. Geochim. cosmochim. Acta 36, 1205–1236 (1972).

    Article  ADS  CAS  Google Scholar 

  13. Wasson, J. T. Proc. 24th Int. Geol. Congr. 15, 161–168 (1972).

    CAS  Google Scholar 

  14. Anders, E. Space Sci. Rev. 3, 583–714 (1964).

    Article  ADS  CAS  Google Scholar 

  15. Larimer, J. W. & Anders, E. Geochim. comochim. Acta 31, 1269–1270 (1967).

    ADS  Google Scholar 

  16. Wai, C. M., Wetherill, G. W. & Wasson, J. T. Geochim. cosmochim. Acta 32, 1269–1278 (1968).

    Article  ADS  Google Scholar 

  17. Wasson, J. T. & Wai, C. M. Nature 261, 114–116 (1976).

    Article  ADS  CAS  Google Scholar 

  18. Scott, E. R. D. Geochim. cosmochim. Acta 42, 1447–1458 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Willis, J. & Wasson, J. T. (in preparation).

  20. Wai, C. M. & Wasson, J. T. Earth planet. Sci. Lett. 36, 1–13 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Modell, M. & Reid, R. C. Thermodynamics and Its Applications (Prentice-Hall, Englewood Cliffs, 1974).

    Google Scholar 

  22. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M. & Kelley, K. K. Selected Values of the Thermodynamic Properties of Binary Alloys (Am. Soc. Met., Metal Park, Ohio, 1973).

    Google Scholar 

  23. Tanutrov, I. N., Vatolin, N. A., Okunev, A. I. & Esin, O. A. Zh. Fiz. Khim. 42, 2805–2807 (1968).

    CAS  Google Scholar 

  24. Ivanova, V. D. & Burylev, B. P. Zh. Fiz. Khim. 45, 2056–2057 (1971).

    CAS  Google Scholar 

  25. Vaisburd, S. E. & Remen, T. F. Zh. Fiz. Khim. 42, 745–747 (1968).

    CAS  Google Scholar 

  26. Predel, B. & Vogelbein, W. Thermochim. Acta 13, 133–145 (1975).

    Article  CAS  Google Scholar 

  27. Predel, B., Vogelbein, W. & Schallner, U. Thermochim. Acta 12, 367–375 (1975).

    Article  CAS  Google Scholar 

  28. Dynan, J. & Miller, E. J. chem. Thermodyn. 7, 1163–1172 (1975).

    Article  CAS  Google Scholar 

  29. Takahashi, H., Janssens, M. J., Morgan, J. W. & Anders, E. Geochim. cosmochim. Acta 42, 97–106 (1978).

    Article  ADS  CAS  Google Scholar 

  30. Zemann, J. Kristallchemie (de Gruyter, Berlin, 1966).

    Google Scholar 

  31. Battat, D., Faktor, M. M. & Moss, R. H. JCS, Faraday I. 70, 2280–2292 (1974).

    Article  CAS  Google Scholar 

  32. Sears, D. Earth planet. Sci. Lett. 41, 128–138 (1978).

    Article  ADS  CAS  Google Scholar 

  33. Mason, B. Handbook of Elemental Abundances in Meteorites (Gordon and Breech, New York, 1971).

    Google Scholar 

  34. Dreibus, G., Spettel, B. & Wänke, H. J. radioanalyt. Chem. 38, 391–403 (1977).

    Article  ADS  CAS  Google Scholar 

  35. Fegley, B. & Lewis, J. Icarus 38, 166–179 (1979).

    Article  ADS  CAS  Google Scholar 

  36. Cameron, A. G. W. Space Sci. Rev. 15, 121–146 (1973).

    Article  ADS  CAS  Google Scholar 

  37. Kelley, K. K. Bull. U.S. Bur. Mines. 584 (1960).

  38. Wagman, D. D. et al. NBS Tech. Not. 270–273 (1968).

  39. Mills, K. C. Thermodynamic Data for Inorganic Sulphides, Selenides, and Tellurides (Butterworth, London, 1974).

    Google Scholar 

  40. Faure, F. M., Mitchell, M. J. & Bartlett, R. W. High Temp. Sci. 4, 181–191 (1972).

    CAS  Google Scholar 

  41. Smales, A. A., Mapper, D. & Fouché, K. F. Geochim. cosmochim. Acta 31, 673–720 (1967).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wai, C., Wasson, J. Nebular condensation of Ga, Ge and Sb and the chemical classification of iron meteorites. Nature 282, 790–793 (1979). https://doi.org/10.1038/282790a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282790a0

  • Springer Nature Limited

This article is cited by

Navigation