Skip to main content
Log in

Nucleotide sequence of a cDNA clone encoding human preproinsulin

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Insulin consists of two polypeptide chains, A (21 amino acids) and B (30 amino acids), linked by disulphide bonds. Both chains are derived from one precursor, proinsulin, which includes a connecting peptide (C) between the A and B chains, and which is excised before the secretion of insulin from the pancreatic B cells1. The observation that the C-peptide varies between species, in contrast to the highly conserved A and B sequences1–3, is consistent with the theory that it serves a purely structural function in insulin synthesis. During in vitro translation of insulin mRNA, a larger peptide containing about 25 additional residues at the N-terminal end (preproinsulin) is the primary product4–7. The prepeptide is cleaved to leave proinsulin during transport into the endoplasmic reticulum and is thought to direct this process specifically8. Using automated amino acid sequence analysis, the partial amino acid sequences of the prepeptide regions of bovine, rat, sea raven and anglerfish preproinsulin have been established4,5,7. The nucleotide sequences of the cloned cDNA and gene coding for rat insulin I have confirmed the amino acid sequence of rat proinsulin I, and have also predicted the sequence of the prepeptide9–11. Like the prepeptides of other secreted proteins, this prepeptide has a prominent hydrophobic region12. We report here the cloning of a cDNA prepared from human insulin mRNA and an analysis of the nucleotide sequence of the cloned molecule including the region coding for the prepeptide and portions of the 5′- and the 3′-untranslated regions of the molecule. We also compare the structure of the human molecule with the previously reported rat mRNA9–11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tager, H. S. & Steiner, D. F. A. Rev. Biochem. 43, 509–538 (1974).

    Article  CAS  Google Scholar 

  2. Nicol, D. S. H. W. & Smith, L. F. Nature 181, 483–485 (1960).

    Article  ADS  Google Scholar 

  3. Oyer, P. E., Cho, S., Peterson, J. D. & Steiner, D. F. J. biol. Chem. 246, 1375–1386 (1971).

    CAS  PubMed  Google Scholar 

  4. Chan, S. J., Keim, P. & Steiner, D. F. Proc. natn. Acad. Sci. U.S.A. 73, 1964–1968 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Lomedico, P. T., Chan, S. J., Steiner, D. F. & Saunders, G. F. J. biol. Chem. 252, 7971–7978 (1977).

    CAS  PubMed  Google Scholar 

  6. Permutt, M. A. & Routman, A. Biochem. biophys. Res. Commun. 78, 855–862 (1977).

    Article  CAS  Google Scholar 

  7. Shields, D. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 74, 2059–2063 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Blobel, G. & Dobberstein, B. J. Cell Biol. 67, 835–861 (1975).

    Article  CAS  Google Scholar 

  9. Ullrich, A. et al. Science 196, 1313–1319 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Villa-Komaroff, L. et al. Proc. natn. Acad. Sci. U.S.A. 75, 3727–3731 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Cordell, B. et al. Cell 18, 533–544 (1979).

    Article  CAS  Google Scholar 

  12. Devillers-Thiery, A., Kindt, T., Scheele, G. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 72, 5016–5020 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Sutcliffe, J. Proc. natn. Acad. Sci. U.S.A. 75, 3737–3741 (1978).

    Article  ADS  CAS  Google Scholar 

  14. Grunstein, M. & Hogness, D. S. Proc. natn. Acad. Sci. U.S.A. 72, 3961–3965.

  15. Maxam, A. & Gilbert, W. Meth. Enzym. (in the press).

  16. Alwine, J. C., Kemp, D. J. & Stark, G. R. Proc. natn. Acad. Sci. U.S.A. 74, 5350–5354 (1977).

    Article  ADS  CAS  Google Scholar 

  17. DeMeyts, P., Van Obberghen, E., Roth, J., Wollmer, A. & Brandenburg, D. Nature 273, 504–509 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Seeburg, P. H., Shine, J., Martial, J. A., Baxter, J. D. & Goodman, H. M. Nature 270, 486–494 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Martial, J. A., Hallewell, R. A., Baxter, J. D. & Goodman, H. M. Science 205, 602–607 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Goodman, H. M., Seeburg, P. H., Shine, J., Martial, J. A. & Baxter, J. D. Alfred Benzon Symp. 13, Munksgaard (in the press).

  21. Chou, P. Y. & Fasman, G. D. Biochemistry 13, 211–222, 222–245 (1974).

    Article  CAS  Google Scholar 

  22. Chan, S. J. et al. in From Gene to Protein: Information Transfer in Normal and Abnormal Cells (Academic, New York, in the press).

  23. Jackson, R. C. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 74, 5598–5602 (1977).

    Article  ADS  CAS  Google Scholar 

  24. Goldstein, J. L., Anderson, R. G. W. & Brown, M. S. Nature 279, 679–685 (1979).

    Article  ADS  CAS  Google Scholar 

  25. Vishwanath, R. L., Devillers-Thiery, A. & Blobel, G. Proc. natn. Acad. Sci. U.S.A. 74, 2432–2436 (1977).

    Article  ADS  Google Scholar 

  26. Shields, D. & Blobel, G. J. biol. Chem. 253, 3753–3756 (1978).

    CAS  PubMed  Google Scholar 

  27. Proudfoot, N. J. & Brownlee, G. G. Nature 263, 211–214 (1976).

    Article  ADS  CAS  Google Scholar 

  28. Kafatos, F., Efstratiadis, A., Forget, B. & Weissman, S. Proc. natn. Acad. Sci. U.S.A. 74, 5618–5622 (1977).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, G., Swain, W., Pictet, R. et al. Nucleotide sequence of a cDNA clone encoding human preproinsulin. Nature 282, 525–527 (1979). https://doi.org/10.1038/282525a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/282525a0

  • Springer Nature Limited

This article is cited by

Navigation