Skip to main content
Log in

Neurectoderm markers retained in phenotypical skeletal muscle cells arising from a glial cell line

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Differentiation in vitro of striated muscle from apparently non-muscle precursor cells has been reported in thymus reticulum1, a fibroblast-like mouse embryo line2 and in a neuronelike cell line derived from a rat brain tumour3. Also Tomozawa and Sueko reported the differentiation of a peripheral neurotumour clonal stem cell line into separate neuronal and glial cell types4. We report here the reproducible and stable phenotypic change of a well characterised rat glial cell line, B9 (refs 5–7), into multinucleate contractile skeletal muscle. The B9 line was derived from a nitrosoethylurea-induced brain tumour, contains S-100 and 14-3-2 proteins, is electrically non-excitable5 and has a putative glial-specific surface antigen, G2 (ref. 6). It has been phenotypically stable in its laboratory of origin at Salk Institute since 1973. After being transported to the Mayo Clinic in Minnesota the cells began to change from cuboidal to elongate shape, fuse into contractile multinucleate fibres and express nicotinic acetylcholine receptors (AChR) on their plasma membranes. Striated myofibrils appeared in their cytoplasm. The first sign of mesectodermal differentiation in B9 was the transitory appearance on its surface of Thy-1 which, in the rat, is a marker of thymocytes8, certain brain cell lines7, immature skeletal muscle9,10, mammary myoepithelial lines11 and fibro-blasts12. This antigen was not detected in previous studies at Salk Institute7. The inductive influence is not yet known. We propose that transformation of a neurectodermal line into muscle may be evidence of the capacity of mammalian neurectoderm to give rise to skeletal tissues. The concept that skeletal muscle in different anatomical regions might have different embryonic origins could be relevant to the distribution of muscles affected by certain diseases in man.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wekerle, H., Paterson, B., Ketelsen, U. P. & Feldman, M. Nature 256, 493–494 (1975).

    Article  ADS  CAS  Google Scholar 

  2. Constantinides, P. G., Taylor, S. M. & Jones, P. A. Devl Biol. 66, 57–71 (1978).

    Article  CAS  Google Scholar 

  3. Brandt, B. L., Kimes, B. W. & Klier, J. G. J. cell Physiol. 88, 255–275 (1976).

    Article  CAS  Google Scholar 

  4. Tomozawa, Y. & Sueko, N. Proc. natn. Acad. Sci. U.S.A. 75, 6305–6309 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Schubert, D. et al. Nature 249, 224–227 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Stallcup, W. B. Prog. clin. biol. Res. 15, 165–178 (1977).

    CAS  PubMed  Google Scholar 

  7. Lesley, J. F. & Lennon, V. A. Brain Res. 153, 109–120 (1978).

    Article  CAS  Google Scholar 

  8. Barclay, A. N., Letarte-Muirhead, M. & Williams, A. F. Biochem. J. 151, 699–706 (1975).

    Article  CAS  Google Scholar 

  9. Lesley, J. F. & Lennon, V. A. Nature 268, 163–165 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Lennon, V. A. & Lesley, J. F. J. Neuropath. exp. Neurol. 37, 649 (1978).

    Article  Google Scholar 

  11. Lennon, V. A., Unger, M. & Dulbecco, R. Proc. natn. Acad. Sci. U.S.A. 75, 6093–6097 (1978).

    Article  ADS  CAS  Google Scholar 

  12. Stern, P. L. Nature new Biol. 246, 76–78 (1973).

    Article  CAS  Google Scholar 

  13. Yaffee, D. Proc. natn. Acad. Sci. U.S.A. 61, 477–483 (1968).

    Article  ADS  Google Scholar 

  14. Patrick, J. & Stallcup, W. B. Proc. natn. Acad. Sci. U.S.A. 74, 4689–4692 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Strauss, A. J. L. et al. Proc. Soc. exp. Biol. Med. 105, 184–191 (1960).

    Article  CAS  Google Scholar 

  16. Schubert, D., Carlisle, W. & Look, C. Nature 254, 341–343 (1975).

    Article  ADS  CAS  Google Scholar 

  17. Katschenko, N. Anat. Anz. 3, 445–467 (1888).

    Google Scholar 

  18. LeLievre, C. S. & LeDouarin, N. M. J. Embryol. exp. Morph. 34, 125–154 (1975).

    CAS  Google Scholar 

  19. Goldman, R. L. Am. J. clin. Path. 52, 741–744 (1969).

    Article  CAS  Google Scholar 

  20. Levine, G. D. & Rosai, J. Hum. Path. 9, 495–516 (1978).

    Article  CAS  Google Scholar 

  21. LeDouarin, N. M., Jotereau, F. V., Houssaint, E. & Belo, M. Ann. Immun. 127, 849–856 (1976).

    CAS  Google Scholar 

  22. Lindstrom, J., Lennon, V. A., Seybold, M. E. & Whittingham, S. Ann. N.Y. Acad. Sci. 274, 254–274 (1976).

    Article  ADS  CAS  Google Scholar 

  23. Lennon, V. A. in Clinical Immunology Update: Reviews for Physicians (ed. Franklin, E.) 259–289 (Elsevier, New York, 1979).

    Google Scholar 

  24. Bargmann, W. in Handbuch des mikroskopischen Anatomie des Menschen vol. 6 (4) (ed. Mollendorff, W. von) 426–428 (Springer, Berlin, 1943).

    Google Scholar 

  25. Freschi, J. E., Parfitt, A. G. & Shain, W. G. J. Physiol., Lond. 293, 1–10 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lennon, V., Peterson, S. & Schubert, D. Neurectoderm markers retained in phenotypical skeletal muscle cells arising from a glial cell line. Nature 281, 586–588 (1979). https://doi.org/10.1038/281586a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/281586a0

  • Springer Nature Limited

This article is cited by

Navigation