Skip to main content
Log in

On the total CO2–titration alkalinity–oxygen system in the Pacific Ocean

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

Decomposition of organic matter changes the concentrations of carbon, nitrogen, phosphorus, oxygen and titration alkalinity (TA) in the ratio 106:16:1:138:–17 (refs 1–3), so the combined effect of decomposing x mol of CaCO3 and y mol of organic matter in 1 kg of seawater on the preformed total CO2 (ΣCO20), preformed TA (TA0), biogenerated ΣCO2 [ΔΣCO2(biol)] and the apparent oxygen utilisation (AOU) can be represented as4 ΔΣCO2=ΣCO2(measured)−ΣCO20=x+106y ΔTA=TA(measured)−TA0=2x−17y ΔΣCO2(biol)=106y; AOU=138y Eliminating x and y from the above equations yields Several early workers5–8 have successfully correlated ΔΣCO2(biol) to AOU with slopes close to the Redfield, Ketchum and Richards (RKR) model1. However, the methods used often have not satisfactorily taken into account the variation of the preformed values for ΣCO2 and TA with sample depth or have mistakenly taken ΔΣCO2(biol) to be equal to ΔΣCO2−O.5ΔTA. The inconsistency between the correlations above and below the thermocline is also not well explained. A modified computational scheme5,8 has recently been developed for calculating the ΣCO2-TA-oxygen correlation with the depth dependent variations of ΣCO20 and TA0 accounted for. The method of calculating ΔΣCO2 is the same as that described in ref. 4 but further useful information has been obtained by plotting ΔΣCO2 against AOU, rather than depth. The results in the Pacific Ocean, presented here, suggest a linear correlation between the bio-generated CO2 and AOU with a slope of 0.722±0.05, in good agreement with that predicted from the RKR model. The deviation of the data from this linear correlation for shallow water can largely be explained by the influences of human induced CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Redfield, A. C., Ketchum, B. H. & Richards, G. A. in The Sea Vol. 2 (ed. Hill, M. H.) 26–77 (Interscience, New York, 1963).

    Google Scholar 

  2. Brewer, P. G., Wong, G. T. F., Bacon, M. P. & Spencer, D. W. Earth, planet. Sci Lett. 26, 81–87 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Chen, C. T. Science 201, 735–736 (1978).

    Article  ADS  CAS  Google Scholar 

  4. Chen, C. T. & Millero, F. J. Nature 277, 205–206 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Culberson, C. & Pytkowicz, R. M. J. Oceanogr. Soc. Jap. 26, 95–100 (1970).

    Article  CAS  Google Scholar 

  6. Ben-Yaakov, S. J. geophys. Res. 76, 7414–7431 (1971); Mar. Chem. 1, 3–26 (1972).

    Google Scholar 

  7. Alvarez-Borrego, S. & Park, P. K. J. Oceanogr. Soc. Jap. 29, 193–202 (1973).

    Article  CAS  Google Scholar 

  8. Edmond, J. M. Deep-Sea Res. 21, 455–480 (1974).

    CAS  Google Scholar 

  9. Ribbat, B. thesis Univ. Heidelberg (1975).

  10. Revelle, R. & Suess, H. E. Tellus 9, 18–27 (1957).

    Article  ADS  CAS  Google Scholar 

  11. Craig, H. Tellus 9, 1–17 (1957).

    Article  ADS  Google Scholar 

  12. Bray, J. R. Tellus 11, 220–230 (1959).

    Article  ADS  CAS  Google Scholar 

  13. Bolin, B. & Erikson, E. in The Atmosphere and the Sea in Motion (ed. Bolin, B.) 130–142 (Rockefeller, New York, 1959).

    Google Scholar 

  14. Broecker, W. S., Li, Y. H. & Peng, T. H. in Impingement of Man on the Oceans (ed. Hood, D. W.) 287–324 (Wiley, New York, 1971).

    Google Scholar 

  15. Keeling, C. D. Tellus 25, 174–198 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Woodwell, G. M. et al. Science 199, 141–146 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Stuiver, M. Science 199, 253–258 (1978).

    Article  ADS  CAS  Google Scholar 

  18. Wong, C. S. Science 200, 197–200 (1978).

    Article  ADS  CAS  Google Scholar 

  19. Postma, H. Nether, J. Res. 2, 258–283 (1964).

    Article  CAS  Google Scholar 

  20. Brewer, P. G. Geophy. Res. Lett. 5, 997–1000 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Takahashi, T., Broecker, W. S., Prince, L. A. & Bainbridge, A. E. Earth planet. Sci. Lett. (submitted).

  22. Ostlund, H. G., Brescher, R., Oleson, R. & Ferguson, M. J. Tritium Laboratory Data Report 8, (University of Miami, 1979).

    Google Scholar 

  23. Riley, G. A. Adv. mar. Biol. 8, 1–118 (1970).

    Google Scholar 

  24. Gordon, D. C. Deep-Sea Res. 18, 1127–1134 (1971).

    CAS  Google Scholar 

  25. Parsons, T. & Takahashi, M. Biological Oceanographic Processes (Pergamon, New York, 1973).

    Google Scholar 

  26. Gieskes, J. M. in The Sea, Vol. 5 (ed. Goldberg, E. D.) 123–151 (Interscience, New York, 1974).

    Google Scholar 

  27. Pytkowicz, R. M. Deep-Sea Res. 11, 381–389 (1964).

    CAS  Google Scholar 

  28. Oeschger, H., Siegenthaler, U., Schotterer, U. & Gugelmann, A. Tellus 27, 168–192 (1975).

    Article  ADS  CAS  Google Scholar 

  29. Broecker, W. S., Peng, T. H. & Stuiver, M. J. geophys. Res. 83, 6179–6186 (1978).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CT., Pytkowicz, R. On the total CO2–titration alkalinity–oxygen system in the Pacific Ocean. Nature 281, 362–365 (1979). https://doi.org/10.1038/281362a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/281362a0

  • Springer Nature Limited

This article is cited by

Navigation