Skip to main content
Log in

Use of Panamanian sea urchins to test the molecular clock

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

A Corrigendum to this article was published on 01 October 1979

Abstract

THE ‘molecular clock’ hypothesis of protein evolution holds that each protein changes at a constant rate, so that the degree of molecular divergence between two species is linearly related to the time for which their lineages have remained separate1. This assertion, however, has been challenged repeatedly by authors who discovered taxa and peptides in which the proposed uniformity of molecular evolution did not hold2,3, who noted that biochemically and palaeontologically determined dates of separation between lineages conflicted4,5, introduced tests that pointed to significant variation in the rates of evolution of the same proteins6,7, or dismissed the hypothesis as a confusion of averages with constants8. Others have postulated that, although the same proteins evolve at different rates in different lineages, the average amount of molecular change over many proteins is sufficiently uniform to provide approximate dates for the splitting of two lines of descent9,10. Here I present evidence from sea urchins separated by the Isthmus of Panama which indicates that even this compromise position is not tenable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, A. C., Carlson, S. S. & White, T. J. A. Rev. Biochem. 46, 573–639 (1977).

    Article  CAS  Google Scholar 

  2. Goodman, M., Barnabas, J., Matsuda, G. & Moore, G. W. Nature 233, 604–613 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Jukes, T. H. & Holmquist, R. Science 177, 530–532 (1972).

    Article  ADS  CAS  Google Scholar 

  4. Radinsky, L. Science 200, 1182–1183 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Simons, E. L. Ann. N. Y. Acad. Sci. 167, 319–331 (1969).

    Article  ADS  Google Scholar 

  6. Langley, C. H. & Fitch, W. M. J. molec. Evolut. 3, 161–177 (1974).

    Article  ADS  CAS  Google Scholar 

  7. Moore, G. W., Goodman, M., Callahan, C., Holmquist, R. & Moise, H. J. molec. Biol. 105, 15–37 (1976).

    Article  CAS  Google Scholar 

  8. Stebbins, G. L. & Lewontin, R. C. Proc. 6th Berkeley Symp. Math. Stat. Prob. V, 23–42 (1972).

  9. Fitch, W. M. & Langley, C. H. Fedn Proc. 35, 2092–2097 (1976).

    CAS  Google Scholar 

  10. Dobzhansky, T., Ayala, F. J., Stebbins, G. L. & Valentine, J. W. Evolution (Freeman, San Francisco, 1977).

    Google Scholar 

  11. Gorman, G. C., Kim, Y. J. & Rubinoff, R. Copeia 1976, 361–364 (1976).

    Article  Google Scholar 

  12. Maxson, L. R. & Wilson, A. C. Science 185, 66–68 (1975).

    Article  ADS  Google Scholar 

  13. Sarich, V. M. Syst. Zool. 18, 416–422 (1969).

    Article  CAS  Google Scholar 

  14. Sarich, V. M. & Wilson, A. C. Science 158, 1200–1203 (1967).

    Article  ADS  CAS  Google Scholar 

  15. Wilson, A. C. & Sarich, V. M. Proc. natn. Acad. Sci. U.S.A. 63, 1088–1093. (1969).

    Article  ADS  CAS  Google Scholar 

  16. Kimura, M. & Ohta, T. J. J. molec. Evolut. 1, 1–17 (1971); Nature 229, 461–469 (1971); Genetics, Princeton 73, Suppl. 19–35 (1973).

    Article  ADS  CAS  Google Scholar 

  17. Kimura, M. Proc. natn. Acad. Sci. U.S.A. 63, 1181–1188 (1969).

    Article  ADS  CAS  Google Scholar 

  18. King, J. L. & Jukes, T. H. Science 164, 788–798 (1969).

    Article  ADS  CAS  Google Scholar 

  19. Ohta, T. & Kimura, M. J. molec. Evolut. 1, 18–25 (1971).

    Article  ADS  CAS  Google Scholar 

  20. Van Valen, L. J. molec. Evolut. 3, 89–101 (1974).

    Article  ADS  CAS  Google Scholar 

  21. Carlson, S. S., Wilson, A. C. & Maxson, R. D. Science 200, 1183–1185 (1978).

    Article  CAS  Google Scholar 

  22. Richmond, R. C. Nature 225, 1025–1028 (1970).

    Article  ADS  CAS  Google Scholar 

  23. Saito, T. Geology 4, 305–309 (1976).

    Article  ADS  Google Scholar 

  24. Webb, S. D. Paleobiology 2, 220–234 (1976); A. Rev. ecol. Syst. 9, 393–426 (1978).

    Article  Google Scholar 

  25. Woodring, W. P. Proc. Am. Phil. Soc. 110, 425–433 (1966).

    Google Scholar 

  26. Chesher, R. H. Bull. biol. Soc. Wash. 2, 139–158 (1972).

    Google Scholar 

  27. Johnson, G. B. A. Rev. ecol. Syst. 8, 309–328 (1977).

    Article  CAS  Google Scholar 

  28. Nei, M. Molecular Population Genetics and Evolution (North-Holland, Amsterdam, 1975).

    Google Scholar 

  29. Mortensen, T. Studies of the Development and Larval Forms of Echinoderms (Gad, Copenhagen, 1921).

    Book  Google Scholar 

  30. Emiliani, C., Gartner, S. & Lidz, B. Paleogeogr. Paleoclim. Paleoecol. 11, 1–10 (1972).

    Article  ADS  Google Scholar 

  31. Durham, J. W. & Allison, E. C. Syst. Zool. 9, 47–91 (1960).

    Article  Google Scholar 

  32. Fell, H. B. & Pawson, D. L. in Treatise on Invertebrate Paleontology Part U, Vol. 3 (ed. Moore, R. C.) 367–440 (Geological Society of America, Kansas, 1966).

    Google Scholar 

  33. Lovejoy, C. O., Bernstein, A. H. & Heipe, K. G. Science 176, 803–805 (1972).

    Article  ADS  CAS  Google Scholar 

  34. Hendler, G. Proc. 3rd Int. Coral Reef Symp. 1, 217–223 (1977).

    Google Scholar 

  35. Ewens, W. J. Genetics Princeton 50, 891–898 (1964).

    CAS  Google Scholar 

  36. Kimura, M. Genet. Res. 11, 247–269 (1968); Genetics Princeton 61, 893–903 (1969).

    Article  CAS  Google Scholar 

  37. Ohta, T. & Kimura, M. Genet. Res. 22, 201–204 (1973); Am. Nat. 109, 137–145 (1975).

    Article  MathSciNet  CAS  Google Scholar 

  38. Chakraborty, R. & Nei, M. Evolution 31, 347–356 (1977).

    Article  Google Scholar 

  39. Lessios, H. A. thesis, Yale Univ. (1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LESSIOS, H. Use of Panamanian sea urchins to test the molecular clock. Nature 280, 599–601 (1979). https://doi.org/10.1038/280599a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/280599a0

  • Springer Nature Limited

This article is cited by

Navigation