Skip to main content
Log in

Mercury(II) sulphide: a photo-stable semiconductor

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

THERE is much interest in photo-electrochemical cells which use a semiconductor–electrolyte junction to transduce light into electrical and chemical energy1. The semiconductors investigated to date fall into two main groups, the first of which contains photostable material but which shows response in the UV rather than the visible region of the spectrum, for example, n-titanium dioxide2, n-strontium titanate3, n-potassium tantalate4, n-tin oxide5 and n-barium titanate6. The second group comprises compounds which respond to the visible region of the spectrum but are photochemically unstable such as n-gallium phosphide7, n-indium phosphide8, n-cadmium sulphide9, and n-cadmium selenide10. Attempts have been made to extend the spectral response of the materials belonging to the first group, by doping11 and chemically affixing dyes to the surface of the semiconductor12. Some success has been attained in stabilising some of the members of the second group; for example, cadmium sulphide and selenide are stable in poly-chalcogenide solutions13. If cells containing a semiconductor–electrolyte junction are to be of any practical use in the harnessing of solar energy then the following criteria for the semiconductor should be met: (1) they should absorb visible radiation; and (2) be photostable and capable of use in powder form. Clearly, if the conduction and valence bands of the semiconductor have energies that facilitate proton reduction and oxidation of hydroxyl ions respectively this would be an added bonus as the cells could be used to either photo-assist or photo-electrolyse the water14. We report here on mercury(II) sulphide (cinnabar) band gap = 2.1 eV15 which fulfils most of the above criteria16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerischer, H. J. electroanalyt. Chem. Interfacial Electrochem. 58, 263–274 (1975).

    Article  CAS  Google Scholar 

  2. Mavroides, J. G., Tchernev, D. I., Kafalas, J. A. & Kolesar, D. F. Mater. Res. Bull. 10, 1023–1030 (1975).

    Article  CAS  Google Scholar 

  3. Watanabe, T., Fujishima, A. & Honda, K. Bull. chem. Soc. Jap. 49, 355–358 (1976).

    Article  CAS  Google Scholar 

  4. Ellis, A. B., Kaiser, S. W. & Wrighton, M. S. J. phys. Chem. 80, 1325–1328 (1976).

    Article  CAS  Google Scholar 

  5. Wrighton, M. S., Morse, D. L., Ellis, A. B., Ginley, D. S. & Abrahamson, H. B. J. Am. chem. Soc. 98, 44–48 (1976).

    Article  CAS  Google Scholar 

  6. Nasby, R. D. & Quinn, R. K. Mater. Res. Bull. 11, 985–992 (1975).

    Article  Google Scholar 

  7. Nozik, A. J. Appl. Phys. Lett. 29, 150–153 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Vervaet, A. A. K., Gomes, W. P. & Cardon, F. J. electroanalyt. Chem. 91, 133–136 (1978).

    Article  CAS  Google Scholar 

  9. Gerischer, H. & Gobrecht, J. Ber. Bunsenges Phys. Chem. 80, 327–330 (1976).

    Article  CAS  Google Scholar 

  10. Ellis, A. B., Kaiser, S. W. & Wrighton, M. S. J. Am. chem. Soc. 98, 1635–1637 (1976).

    Article  CAS  Google Scholar 

  11. Ghosh, A. K. & Maruska, H. P. J. electrochem. Soc. 124, 1516–1522 (1977).

    Article  CAS  Google Scholar 

  12. Kim, H. & Laitinen, H. J. electrochem. Soc. 122, 53–58 (1975).

    Article  CAS  Google Scholar 

  13. Ellis, A. B., Kaiser, S. W. & Wrighton, M. S. J. Am. chem. Soc. 98, 6855–6866 (1975).

    Article  Google Scholar 

  14. Bolts, J. M. & Wrighton, M. S. J. phys. Chem. 80, 2641–2645 (1976).

    Article  CAS  Google Scholar 

  15. Strehlow, W. H. & Cook, E. L. J. phys. Chem. Ref. Data 2, 163–193 (1973).

    Article  ADS  CAS  Google Scholar 

  16. Br. Patent Appl. No. 16766/78 (27 April, 1978) and 47745/78 (8 December 1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DAVIDSON, R., WILLSHER, C. Mercury(II) sulphide: a photo-stable semiconductor. Nature 278, 238–239 (1979). https://doi.org/10.1038/278238a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/278238a0

  • Springer Nature Limited

This article is cited by

Navigation