Skip to main content

Advertisement

Log in

Numerical simulation of climate and climatic change

  • Climatology Supplement
  • Published:

From Nature

View current issue Submit your manuscript

Detailed three-dimensional numerical models of the atmosphere, coupled as necessary to models of other parts of the climatic system, provide the most promising approach to understanding the physical basis of climate. Models of this kind can be used to investigate the impact of anthropogenic pollution on climate. At the present time, the main concern is with increasing concentrations of CO2 which might lead to overall warming of the troposphere, but chemical and thermal pollution may also pose a threat. The possible climatic changes would take place slowly and would involve the response of the slowly reacting parts of the climatic system, particularly the oceans. The problem of how to simulate such changes of climate presents many difficulties, which are currently being studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Manabe, S., Bryan, K. & Spelman, M. J. J. phys. Oceanogr. 5, 3–29 (1975).

    Article  ADS  Google Scholar 

  2. Holloway, J. L., Jr & Manabe, S. Mon. Weath. Rev. 99, 335–370 (1971).

    Article  ADS  Google Scholar 

  3. Stone, P. H., Chow, S. & Quirk, W. J. Mon. Weath. Rev. 105, 170–194 (1977).

    Article  ADS  Google Scholar 

  4. Washington, W. M., Otto-Bliesner, B. & Williamson, G. January and July simulation experiments with the 2.5° latitude–longitude version of the NCAR general model (NCAR/TN 123 STR, NCAR, Boulder, Colorado, 1977).

  5. Gates, W. L. & Schlesinger, M. E. J. atmos. Sci. 34, 36–76 (1977).

    Article  ADS  Google Scholar 

  6. Corby, G. A., Gilchrist, A. & Rowntree, P. R. Methods in Computational Physics, 17, The UK Meteorological Office 5-level General Circulation Model. (Academic, New York, 1977).

  7. CLIMAP Project Members. Science 191, 1131–1138 (1976).

  8. Manabe, S. & Hahn, D. G. J. geophys. Res., 82, 3889–3911 (1977).

    Article  ADS  Google Scholar 

  9. Williams, J., Barry, R. G. & Washington, W. M. J. appl. Meteor. 13, 305–317 (1974).

    Article  ADS  Google Scholar 

  10. Gates, W. L. J. atmos. Sci. 33, 1844–1873 (1976).

    Article  ADS  Google Scholar 

  11. Charney, J. G. Q. Jl. R. meteor. Soc. 101, 193–202 (1975).

    Article  ADS  Google Scholar 

  12. Charney, J. G., Quirk, W. J., Chow, Shu-Hsien & Kornfield, J. J. atmos. Sci. 34, 1366–1385 (1977).

    Article  ADS  Google Scholar 

  13. Walker, J. & Rowntree, P. R. Q. Jl. R. meteor. Soc. 103, 29–46 (1977).

    Article  ADS  Google Scholar 

  14. Augustsson, T. & Ramanathan, V. J. atmos. Sci. 34, 448–451 (1977).

    Article  ADS  CAS  Google Scholar 

  15. Manabe, S. & Wetherald, R. T. J. atmos. Sci. 32, 3–15 (1975).

    Article  ADS  CAS  Google Scholar 

  16. WMO Bull. No. 319 (1976).

  17. Newson, R. L. Nature 241, 39–40 (1973).

    Article  ADS  Google Scholar 

  18. Williams, J., Kromer, G. & Gilchrist, A. IIAS A Research Memorandum RM-77-15, 2361, Laxenburg, Austria (1977).

  19. Groves, K. S., Mattingly, S. R. & Tuck, A. F. Nature 273, 711–715 (1978).

    Article  ADS  CAS  Google Scholar 

  20. Mattingly, S. R., Met. Office 20. Tech. Note 11/123, Bracknell, UK (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilchrist, A. Numerical simulation of climate and climatic change. Nature 276, 342–345 (1978). https://doi.org/10.1038/276342a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/276342a0

  • Springer Nature Limited

This article is cited by

Navigation