Skip to main content
Log in

Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

SHEETZ AND SINGER have proposed that the actions of certain amphipathic drugs in producing curvature of the membrane of human red blood cells (RBCs) could be explained by assuming that these drugs selectively entered one of the leaflets of the lipid bilayer, thus causing lateral expansion of that leaflet relative to the other1. The membrane was therefore forced to curve in order to accommodate this extra material and the direction of this curvature was predictable, leading to production of either stomatocytes or echinocytes. Membrane curvature, leading to the formation of stomatocytes or echinocytes, can also be produced by subjecting human RBCs to phospholipase C attack2–5. In this report we attempt to explain these phospholipase C-induced changes in terms of Sheetz and Singer's model, taking into account the observation that 1,2-diacylglycerol (the product of phospholipase C action), unlike phospholipids, can migrate rapidly across the membrane bilayer. Rapid transbilayer migration of 1, 2-diacylglycerol has previously been inferred from the observed increase in the rate of synthesis of phosphatidate in intact RBCs that have been exposed to phospholipase C: this phosphatidate is formed from diacylglycerol and cytosolic ATP by diacylglycerol kinase, presumably at the inner surface of the membrane2. We have now used this procedure, in which the endogenous diacylglycerol kinase of the erythrocyte is used to trap 1, 2-diacylglycerol appearing on the inner surface of the red cell membrane, to compare the time courses of phospholipase C-catalysed production of diacylglycerol and of the appearance of phosphatidate, and thus obtain an estimate of the rate of transbilayer migration of 1, 2-diacylglycerol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sheetz, M. P. & Singer, S. J. Proc. natn. Acad. Sci. U.S.A. 71, 4457–4461 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Allan, D., Low, M. G., Finean, J. B. & Michell, R. H. Biochim. biophys. Acta 413, 309–316 (1975).

    Article  CAS  PubMed  Google Scholar 

  3. Allan, D. & Michell, R. H. Biochim. biophys. Acta 508, 277–286 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. Allan, D., Billah, M. M., Finean, J. B. & Michell, R. H. Nature 261, 58–60 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Allan, D. & Michell, R. H. Biochem. J. 166, 495–499 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Call, F. L. Jr., & Rubert, M. J. Lipid Res. 14, 466–474 (1973).

    CAS  PubMed  Google Scholar 

  7. McNamee, M. G. & McConnell, H. M. Biochemistry 12, 2951–2958 (1973).

    Article  CAS  PubMed  Google Scholar 

  8. Bloj, B. & Zilversmit, S. B. Biochemistry 15, 1277–1283 (1976).

    Article  CAS  PubMed  Google Scholar 

  9. Renooij, W., van Golde, M. G., Zwaal, R. F. A. & van Deenen, L. L. M. Eur. J. Biochem. 61, 53–58 (1976).

    Article  CAS  PubMed  Google Scholar 

  10. Coleman, R., Finean, J. B., Knutton, S. & Limbrick, A. R. Biochim. biophys. Acta 219, 81–92 (1970).

    Article  CAS  PubMed  Google Scholar 

  11. Michell, R. H. Biochim. biophys. Acta 415, 81–147 (1975).

    Article  CAS  PubMed  Google Scholar 

  12. Skipski, V. P., Peterson, R. F. & Barclay, M. Biochem. J. 90, 374–378 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freeman, C. P. & West, D. J. Lipid Res. 7, 324–327 (1966).

    CAS  PubMed  Google Scholar 

  14. Bartlett, G. J. biol. Chem. 234, 466–468 (1959).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ALLAN, D., THOMAS, P. & MICHELL, R. Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature. Nature 276, 289–290 (1978). https://doi.org/10.1038/276289a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/276289a0

  • Springer Nature Limited

This article is cited by

Navigation