Skip to main content
Log in

Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality

  • Letter
  • Published:

From Nature

View current issue Submit your manuscript

Abstract

CLINICAL isolates of bacteria that have gained resistance to β-lactam antibiotics (penicillins, cephalosporins and related compounds) often arise by the acquisition of a plasmid that produces a β-lactamase1,2. An increase in β-lactamase activity has also been shown to cause resistance in some mutants isolated in the laboratory3. In other cases, β-lactamase activity is not the cause of resistance and, at least in Gram-negative bacteria, alteration of the cell envelope resulting in decreased penetration of the antibiotic to the targets responsible for lethality in the cytoplasmic membrane has been proposed3,4. For several groups of antibiotics resistance has been shown to occur by a decrease in the affinity of the target for lethality for the antibiotic5–9 but, although this mechanism has been suggested as a possible cause of resistance to β-lactam antibiotics, no examples have been reported. The lethality targets for β-lactam antibiotics in Escherichia coli have recently been identified and I report here the characterisation of a mutant that has gained resistance to some β-lactams by a decrease in the affinity of such a target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richmond, M. H. & Curtis, N. A. C. Ann. N.Y. Acad. Sci. 235, 553–567 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Rolinson, G. N. Proc. R. Soc. B 179, 403–410 (1971).

    Article  ADS  CAS  Google Scholar 

  3. Boman, H. G., Nordstrom, K. & Normark, S. Ann. N.Y. Acad. Sci. 235, 569–586 (1974).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Rodriguez, W. & Saz, A. R. Antimicrob. Ag. Chemother. 7, 788–792 (1975).

    Article  CAS  Google Scholar 

  5. Davis, B. D. & Maas, W. K. Proc. natn. Acad. Sci. U.S.A. 38, 775–785 (1952).

    Article  ADS  CAS  Google Scholar 

  6. Sirotnak, F. M., Donati, G. & Hutchison, D. J. J. biol. Chem. 239, 4298–4302 (1964).

    CAS  PubMed  Google Scholar 

  7. Babinet, C. & Condamine, H. C.r. hebd. Séanc. Acad. Sci., Paris 267, 231–232 (1968).

    CAS  Google Scholar 

  8. Ozaki, M., Mizushima, S. & Nomura, M. Nature 222, 333–339 (1969).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Gellert, M. et al. Proc. natn. Acad. Sci. U.S.A. 74, 4772–4776 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Blumberg, P. M. & Strominger, J. L. Bact. Rev. 38, 291–335 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Spratt, B. G. Science Prog. Lond. 65, 101–128 (1978).

    CAS  Google Scholar 

  12. Spratt, B. G. & Pardee, A. B. Nature 254, 516–517 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Spratt, B. G. Proc. natn. Acad. Sci. U.S.A. 72, 2999–3003 (1975).

    Article  ADS  CAS  Google Scholar 

  14. Spratt, B. G., Jobanputra, V. & Schwarz, U. FEBS Lett. 79, 374–378 (1977).

    Article  CAS  PubMed  Google Scholar 

  15. Tamaki, S., Nakajima, S. & Matsuhashi, M. Proc. natn. Acad. Sci. U.S.A. 74, 5472–5476 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Suzuki, H., Nishimura, Y. & Hirota, Y. Proc. natn. Acad. Sci. U.S.A. 75, 664–668 (1978).

    Article  ADS  CAS  Google Scholar 

  17. Spratt, B. G. Antimicrob. Ag. Chemother. 11, 161–166 (1977).

    Article  CAS  Google Scholar 

  18. Spratt, B. G., Jobanputra, V. & Zimmermann, W. Antimicrob. Ag. Chemother. 12, 406–409 (1977).

    Article  CAS  Google Scholar 

  19. Laskey, R. A. & Mills, A. D. Eur. J. Biochem. 56, 335–341 (1975).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

SPRATT, B. Escherichia coli resistance to β-lactam antibiotics through a decrease in the affinity of a target for lethality. Nature 274, 713–715 (1978). https://doi.org/10.1038/274713a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/274713a0

  • Springer Nature Limited

This article is cited by

Navigation